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1 Calculating the top-down heritability h2
pop from population data

1.1 Explained, missing and phantom heritability

The proportion of heritability explained by a set of loci is πexplained =
h2
known
h2
pop

. The missing heri-

tability is πmissing = 1−πexplained = 1− h2
known
h2
pop

. The phantom heritability is the missing heritability

remaining after all causal loci were discovered, πphantom = 1− h2
all

h2
pop

.

The values h2
all and h2

known are typically obtained by summing the individual variances explained

over all causal loci, and all known loci, respectively (see main text). The value h2
pop is typically

obtained by measuring phenotypic similarity among family members, as described next in Sections

1.2 - 1.5.

Throughout the paper, we are interested in the issue of consistency, that is, whether or not the

population estimates h2
pop converge asymptotically to the heritability h2

all as the sample size grows.

We therefore focus on the actual values of the quantities h2
pop, h

2
known and h2

all. We are not interested

here in issues of precision - that is, sampling variation in estimates due to sample size. In focusing

on consistency, we can assume that we know the true population values of the various parameters

such as genetic effect size (for example, βi, defined as the additive effect of the i-th variant to the

trait) or phenotypic similarity (for example, rR, defined as the phenotypic correlation coefficient

between two individuals of familial relationship R).

1.2 Partitioning of phenotypic variance

For a general genetic architecture Ψ(G,E), and assuming no GxE interactions, the genetic archi-

tecture is written as,

Z = Ψ(G,E) = Ψ′(g1, .., gn) + ε (1.1)

where Ψ′ is a function only of genotypes, giving the genotypic value Ψ′(g1, .., gn), i.e. the average

level of the phenotype for individuals with genotype vector (g1, .., gn). Here Z is the value of the

trait. It is a random variable, with a distribution depending both on the distribution of noise ε,

and a distribution of the genotypes (g1, .., gn) in the population. Here and throughout, we will use

upper-case (e.g. Z) to denote random variables, and lower-case (e.g. z) to denote their realized

values. The quantity gi typically denotes the diploid genotype at the i-th variant site, which is

0, 1 or 2 according to the number of variant alleles. (Alternatively we can choose to distinguish

between the maternally- and paternally-inherited sites, in which case the gi are binary variables.) ε

is an (unobserved) environmental variable contributing to the trait’s value. Here and throughout, we

assume that the trait is normalized to have mean zero and variance one, and that the environmental

component ε has a Gaussian distribution, ε ∼ N(0, Ve). The variance in the trait can be partitioned

as (see e.g. ref.,1 pages 85-87),

VP = VG + Ve =
n∑

i,j=0

VAiDj + Ve (1.2)
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Here VAiDj represents the interaction of additive variance of order i and dominance variance of

order j, and we use the convention VA0D0 = VAnDn = 0.

Ve is the environmental variance. When considering the variance decomposition for two indi-

viduals, the environmental variable ε is further partitioned into a shared part, εc, with variance Vc,

and a unique part, εu, with variance Vu (such that Vc +Vu = Ve). This partitioning varies based on

the degree of shared environment between the two individuals, which we assume is determined by

the familial relationship. We therefore write, for example, Vc,sib, Vc,cousin to represent the level of

shared environment for siblings, cousins etc.

1.3 Genetic interactions confound heritability estimates: The ACE model

This section and the following two sections describe three common approaches for estimating the

narrow-sense heritability h2
all from population data. All three estimators are based on the notion of

comparing phenotypic similarity of close family members.

The similarity is measured by phenotypic correlation, rR = corr(Z,ZR), where Z is the value of

the trait for an individual and ZR is the value for a relative with familial relationship R. According

to eq. (1.2), the phenotypic variance depends on genetic interactions of different levels and different

environmental variance components.

Ideally, an estimator of the heritability from population data will consider all the different vari-

ance components, and will converge, as sample size increases, to the true heritability. However,

the problem is that such estimators are typically based on only two or a few more familial rela-

tions (for example, twins, siblings, parent-offspring) and there is no way to estimate the different

variance components from so few observations. The “solution” has been to introduce simplifying

assumptions. We next examine the effect of such simplifying assumptions on heritability estimates.

In twin studies, one observes two variables, the monozygotic twin correlation rMZ , and the

dizygotic twin correlation rDZ . The ACED model is often used for twin studies. It partitions

the variance of a trait to four components: Additive, Common environment, unique Environment

and Dominance (see e.g.2). Since all variance components should sum to one, the model has 3

free parameters - Additive, Dominance and Common environmental variances. Based on the two

observed values rMZ , rDZ , there is no way to estimate these 3 parameters of the ACED model from

the data. One must therefore give up one component of the model. The most widely used choice

is the ACE model described in the main text, where one completely neglects interactions (both

Dominance and epistasis). To illustrate the effect of interactions on the ACE model, we give the

formulas for monozygotic and dizygotic twin correlations obtained from eq. (1.2),

rMZ = Vc,MZ +

n∑
i,j=0

VAiDj (1.3)

rDZ = Vc,DZ +

n∑
i,j=0

2−(i+2j)VAiDj (1.4)

The formula for calculating h2
pop in the ACE model is,

8



h2
pop(ACE) = 2(rMZ − rDZ) (1.5)

The estimator attempts to eliminate the effect of shared environment by subtracting rDZ from rMZ .

(N.B. the estimator makes the implicit assumption that shared environment is identical for MZ and

DZ twins (Vc,MZ = Vc,DZ). If there are differences in the shared environment due to in-utero or

subsequent effects (Vc,MZ > Vc,DZ), then the ACE model will not fully eliminate the effect of shared

environment.)

The estimator (obtained from eqs. (1.3, 1.4)) can be partitioned as,

h2
pop(ACE) =

n∑
i,j=0

(1− 2−(i+2j))VAiDj = h2
all +

∑
(i,j) 6=(1,0)

(1− 2−(i+2j))VAiDj = h2
all +W (ACE)

(1.6)

where we have used h2
all = VA since we assume that the overall phenotypic variance is Vp = 1.

The term W =
∑

(i,j)6=(0,1)(1 − 2−(i+2j))VAiDj is the error in estimating h2
all. It is always non-

negative, and is zero only when the trait follows a strictly additive model. Otherwise, we have

W > 0 and the heritability estimate is biased upwards, h2
pop > h2

all.

1.4 Shared environment confounds heritability estimates: The ADE model

Alternatively, the ADE model assumes a dominance term (which allows a partial correction for

genetic interactions) but completely ignores shared environment among relatives. In the ADE

model, the formula for h2
pop is

h2
pop(ADE) = 4rDZ − rMZ (1.7)

This gives,

h2
pop(ADE) =

n∑
i,j=0

(4× 2−(i+2j) − 1)VAiDj + 3Vc,sib =

h2
all +

[ ∑
(i,j)6={(1,0),(0,1),(2,0)}

−(1− 22−(i+2j))VAiDj + 3Vc,sib

]
≡

h2
all +W (ADE) (1.8)

The term W (ADE) represents our error in estimating the heritability. It is composed of two

parts. The first (summation) term is composed of genetic interactions, and is always non-positive.

The ADE estimator eliminates VD and VAA, but higher order interactions are still present and will

lead to an under-estimate (as opposed to over-estimate) of the heritability when genetic interactions

exist. More disturbingly, the ADE estimator completely ignores shared environment and thus gives

rise to the second part, 3Vc,sib; it is always non-negative and will inflate the heritability estimation

when shared environment is present. This can yield substantial phantom heritability.
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1.5 Heritability estimation by parent-offspring regression

Another estimator for the heritability is obtained by regression of offspring phenotype on the mid-

parents phenotype,

h2
pop(PO) =

√
2rPO (1.9)

that is, one regresses the phenotype of the offspring Zoff on the average phenotype of the two

parents,
Zp+Zm

2 to get rPO = corr(Zoff ,
Zp+Zm

2 ). This estimate goes back to Galton,3 who coined

the expression “regression toward the mean”, which simply means that the offspring value, Zoff , is

on average closer to the population mean than the mid-parent value
Zp+Zm

2 - which is mathematically

equivalent to having rPO < 1. The correlation coefficient rPO measures the strength of the regression

to the mean, which in turn is a measure of the role of genetics in the trait, i.e. heritability. The

variance partitioning for this estimator is as follows,

h2
pop(PO) = Vc,po +

n∑
i=0

21−iVAi = h2
all + Vc,po +

n∑
i=1

21−iVAi = h2
all +W (PO) (1.10)

where Vc,po is the expected shared environment between offspring and their parents (which may be

different than Vc,sib used previously). The term W (PO) = Vc,po+
∑n

i=1 21−iVAi represents our error

for this estimator. An advantage of using parent-offspring regression is that dominance effects and

their interactions completely vanish. However, the estimator may be still greatly inflated by both

shared environment components between parents and their offspring Vc,po, and genetic interactions

between different loci (additive-by-additive interactions), VAi for i > 1.

Again, under an additive model with no shared environment, this is a consistent estimator

for the true heritability h2
all. Under a general model, we get an over-estimation due to genetic

interactions (albeit a different over-estimation than the one obtained by the ACE model), and also

an over-estimation due to shared environment between parents and their offspring.

1.6 Summary: Problems of different heritability estimates

The estimator h2
pop(ACE) yields an overestimate, by failing to account for genetic interactions. The

estimator h2
pop(ADE) may yield an underestimate (by failing to account for genetic interactions) or

an overestimate (by failing to account for shared environment). The estimator h2
pop(PO) yields an

overestimate (by failing to account for additive x additive interactions and by failing to account for

shared environment).

None of the widely used estimators are immune to overestimation for a general architecture Ψ.

Each estimator may inflate the apparent heritability in different circumstances. In Sections 3 and

4, we compute the values of the three heritability estimators under various (non-additive) genetic

architectures.
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1.7 Importance of clarity about definitions of heritability

Authors often use the term “heritability” and the symbol h2 to refer to both the true heritability

h2
all and the apparent heritability h2

pop, despite the fact that these quantities need not be equal. For

example, Falconer and MacKay2 (page 154) state that

“There are similarly two definitions of additive variance, which is the variance of breeding values.

The theoretical one, described in the previous chapter, is derived by summation over loci considered

separately, and it excludes interaction variances. The practical one is that which determines, and is

estimated from, covariances of relatives, and it contains fractions of the additive x additive interac-

tion variance; for example, twice the offspring-parent covariance estimates VA + 0.5VAxA + smaller

fractions of the higher order interactions, where VA is the theoretically defined additive variance.

The only way of estimating the additive variance is from covariances of relatives, and it is this that

is needed for predictions, such as responses to selection. So when we speak of “additive variance”

and write “VA” it is best to regard these as referring to the practical definition with its included

fractions of interaction variances. In reality, however, the difference between the two definitions is

probably seldom more than trivial compared with the errors of estimation.”

The text illustrates two important issues:

i. The notion that a single term “additive variance” has two definitions that are not equivalent

is unacceptable. It gives rise to considerable potential for confusion, including conflating

estimators for the two quantities.

ii. The authors also suggest that the differences between h2
all and h2

pop are likely to be small. In

fact, the results here show that the difference may be large. In contrast to errors in estimation,

which can be overcome by simply increasing sample size, there is no practical way to overcome

the difference between the two quantities when considering close relatives.

Throughout the paper, we introduce distinct terminology and nomenclature to distinguish be-

tween quantities with distinct definitions.

1.8 Problems with narrow and broad sense heritability estimates

Calculating missing heritability is problematic for both the additive (narrow-sense) heritability h2

and the overall (broad-sense) heritability H2. Consider a trait function P = Ψ(G,E) that depends

on genotype G = (g1, g2, .., gn) and environment E = (εR, εu).

The situation for the narrow-sense heritability h2 is discussed at length in the main text. The

fundamental issue is this: it is straightforward to calculate h2 based on a bottom-up calculation

given the loci, but there is no way to obtain a top-down measure based on epidemiological data for

an arbitrary (non-additive) function Ψ.

For H2, the situation is roughly reversed. If we assume that the phenotype has no shared

environmental component (VC = 0), then we can obtain a straightforward top-down estimate of

H2:

H2
all = rMZ . (1.11)
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However, there is no practical way to obtain a bottom-up estimate of the overall heritability

explained by a set of variants, for an arbitrary (non-additive) function Ψ. The variance explained

by a subset of the variants S = {g1, g2, .., gm} is

H2
S = 1−

∑
(g1,..,gm)∈{0,1,2}m

Pr(g1, .., gm)V ar(Z|g1, .., gm) (1.12)

(Recall that the trait is normalized, VP = 1). To calculate H2
S , we need to estimate the value of

the 3m terms in the sum. For an arbitrary function Ψ, this would require enough observations of

each of the 3m genotypes at the variant loci. Except when m is very small, the required sample size

would be too large to be practical.
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2 The liability-threshold (A∆) model

2.1 Definition

We adopt the classical liability threshold (A∆ ) model.4,5 In the main text we describe a minor

variation where disease occurs if the liability is below (rather than above) a pre-specified threshold.

This changes the biological interpretation of the model, but by symmetry, all quantities of interest

remain unchanged. We describe the computations in terms of the classic model but they hold also

for the model described in the main text.

Briefly, the A∆(h2, τ) model defines an (observed) disease Z in terms of an (unobserved) quan-

titative trait P , called a liability. The trait P follows an additive model P =
∑n

i=1 βig
′
i + ε (as in

eq. (3) in the main text), with additive heritability h2, and the disease occurs (Z=1) if and only if

P ≥ τ , for the specified threshold τ . The model is largely insensitive to the number of loci, their

effect sizes and allele frequencies - as long as n is sufficiently large we can assume that P is approxi-

mately normally distributed. We will normalize P so that it follows a standard normal distribution

N(0, 1), with mean 0 and variance 1. We assume that the genetic component
∑

i βig
′
i ∼ N(0, h2)

and the environmental component ε ∼ N(0, 1 − h2) are also normally distributed (with smaller

variances). We can further partition the environmental component into shared and unique environ-

mental variance, ε = εc,R+εu,R, as discussed in the main text, where εc,R is the shared environmental

component between two individuals with familial relationship R. In this case, we can parameterize

the model as A∆(h2, τ, cR), where cR denotes the fraction of environmental variance which is shared,

cR = V ar(εc,R)/(1− h2).

2.2 Risk to relatives

The two parameters (h2, τ) completely specify the genetic architecture and all observable parameters

- including the prevalence µ and risk λR to relatives of each type R of an affected individual. The

prevalence is simply µ = Φ(τ), where Φ is the standard Gaussian cumulative distribution function.

To compute risk to relatives, we first write the joint distribution of liabilities of two family

members, denoted P and PR . Each of the two values is a standard Gaussian random variable,

but they are correlated due to Identity-By-Descent (IBD) sharing. The average level of IBD

sharing for relatives of degree R is 2κR, where κR is the kinship coefficient (κR = 1
2 ,

1
4 ,

1
8 ,

1
16 , .. for

monozygotic twins, dizygotic twins, grandchildren-grandparents, cousins .. respectively). We do not

consider here variations around these average values which arise in practice (see Sections 8-10). The

average IBD sharing level determines the average correlation between P and PR, and the vector

(P, PR) is a bivariate Gaussian random variable, with the mean (zero) vector and covariance matrix

given by (
P

PR

)
∼ N(

(
0

0

)
,

(
1 2κRh

2

2κRh
2 1

)
) (2.1)
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Using standard properties of the bivariate Gaussian distribution, we can derive the conditional

distribution of the liability of one family member, PR, given that we know the value of the liability

for another family member, P ,

PR|P ∼ N(2κRh
2P, 1− 4κ2

Rh
4) (2.2)

We compute the relative risk λR by integrating the bivariate Gaussian in the quarter of the

(P, PR) plane which lies above the liability threshold τ , that is (P ≥ τ, PR ≥ τ),

λR =
1

µ2
Pr(P, PR ≥ τ) =

1

µ2

∫ ∞
x=τ

ϕ(x)Pr(PR ≥ τ |P = x)dx (2.3)

where ϕ (= Φ′) is the standard Gaussian probability density function. We get the following expres-

sion for the relative risk,

λR =
1

µ2

∫ ∞
x=τ

ϕ(x)
[
1− Φ

( τ − κRh2x√
1− κ2

Rh
4

)]
dx (2.4)

2.3 Fitting an A∆ model from population data

To apply the A∆ model to a disease, one takes epidemiological observable parameters and fits the

unseen parameters τ, h2 and cR. When only two epidemiological parameters are observable (say, µ

and λMZ), we cannot fit 3 parameters. We therefore neglect the shared environment component cR

and fit only τ, h2 (this will bias the estimation of h2 upwards when shared environment is significant).

First, for a given prevalence µ, we can compute the corresponding threshold τ = τ(µ) directly from

the Gaussian distribution function, τ = Φ−1(µ). Given the risk to a particular type of relative

(for example, the risk λMZ to a monozygotic twin of an affected individual), we can solve for h2

numerically in eq. (2.4) above to get the heritability.

If we observe three population parameters, µ, λMZ and λs, we can fit all three parameters,

τ, h2 and cR. This allows us to separate the phenotypic similarity among relatives to genetic (h2)

and shared environmental (cR) parts. We solve again eq. (2.4), this time twice, for λMZ and λs

separately, to get two different estimators h2
s and h2

MZ . Then the heritability h2 and the shared

environment coefficient cR are determined by solving the linear system of two equations,

h2
MZ = h2 + cR(1− h2) ; h2

s = h2 + 2cR(1− h2) (2.5)

2.4 Effect size and heritability explained for a single locus

In practice, the variants discovered in a GWAS (with genotypes gi) are described in terms of risk

allele frequency, fi, and genetic relative risk ηi. The genetic relative risk can be defined as the relative

increase in likelihood of disease given a homozygous risk genotype, compared to a heterozygous state,

ηi = Pr(Z=1|gi=2)
Pr(Z=1|gi=1) . We can write the two alleles as gi,(M), gi,(F ), with gi = gi,(M) + gi,(F ), and can
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also define the genetic relative risk in terms of alleles, for example ηi =
Pr(Z=1|gi,(M)=1)

Pr(Z=1|gi,(M)=0) . That is, ηi

is the increased risk to a carrier of a risk allele compared to a non-carrier (we can write a similar

equation for the paternal allele). We assume that the risk due to the paternal allele is identical,

and that there is no dominance interaction between the two alleles - in this case the two definitions

for ηi are equivalent.6 For a genotype gi, we need to convert between ηi, the genetic relative risk on

the observed disease scale, and βi, the effect size; or equivalently h2
i , the heritability explained by

the locus on the liability scale. For a genotype gi with risk allele frequency fi and additive effect

βi, the heritability explained is h2
i = 2β2

i fi(1 − fi). The risk for disease for a given value of each

allele (0 or 1) is,

Pr(Z = 1|gi,(M) = j) = 1− Φ
(τ + βif

j
i (fi − 1)1−j√

1− β2
i fi(1− fi)

)
, j = 0, 1 (2.6)

and the genetic relative risk ηi is,

ηi = η(βi, fi) =
1− Φ

(
τ−βi(1−fi)√
1−β2

i fi(1−fi)

)
1− Φ

(
τ+βifi√

1−β2
i fi(1−fi)

) (2.7)

Assuming that there is no dominance interaction between the maternal and paternal alleles, the

increased risk for a homozygous risk-allele carrier (gi = 2), compared to a homozygous alternative

allele carrier (gi = 0), will be simply η2
i .
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3 The limiting pathway (LP) model for quantitative traits

3.1 Definition

The Limiting Pathways model for quantitative trait LP (k, h2
pathway, cR) is defined as the minimum

of k standard Gaussian i.i.d. random variables, Zi, with each being the sum of genetic, common

environmental and unique environmental components, with respective variances h2
pathway, cR(1 −

h2
pathway) and (1− cR)(1− h2

pathway) (see main text). For a single pathway (k = 1), this definition

reduces to the simple additive model (see eq. (3) in the main text). From this definition, we can

compute all parameters of interest - including the phenotypic correlation between relatives, the

true (additive) heritability h2
all and the apparent heritability h2

pop that one would calculate from

epidemiologically observable parameters.

The overall shared environment for the trait, Vc, is defined as the difference between the MZ

twin phenotypic correlation, and the correlation of MZ twins reared apart, Vc = rMZ − rMZ{cR=0}.

The latter correlation, rMZ{cR=0} is simply computed as the MZ twin correlation for the model

LP (k, h2
pathway, 0).

3.2 Calculating the true heritability, h2
all

This section provides a detailed calculation of the heritability in the LP model LP (k, h2
pathway, cR).

The observed trait can be written as the maximum of k i.i.d. standard Gaussian random variables,

Z = max(Z1, .., Zk). The probability distribution function Gk and probability density function gk

of Z are,

Gk(z) = Pr(Z ≤ z) = Φ(z)k ; gk(z) = kΦ(z)k−1ϕ(z) (3.1)

The mean and variance of z are,

µZ = E[Z] =

∫ ∞
z=−∞

gk(z)zdz = k

∫ ∞
z=−∞

Φ(z)k−1ϕ(z)zdz (3.2)

σ2
Z = E[Z2]− (E[Z])2 =

∫ ∞
z=−∞

gk(z)z
2dz −

[ ∫ ∞
z=−∞

gk(z)zdz
]2

=

k

∫ ∞
z=−∞

Φ(z)k−1ϕ(z)z2dz −
[
k

∫ ∞
z=−∞

Φ(z)k−1ϕ(z)zdz
]2

(3.3)

The true (bottom-up) heritability h2
all is defined as the sum of the additive contributions over all

loci h2
all =

∑
j h

2
j =

∑
j β

2
j fj(1−fj). Since the genetic contribution within each pathway is additive

(in similar to eq. (3) in the main text), we can compute the heritability directly by calculating the

variance explained by the entire pathway variable Zi. By symmetry, each pathway contributes the

same amount to the true heritability h2
all. We can therefore express h2

all as

h2
all = k · corr(Z1, Z)2h2

pathway = kh2
pathway

[E[Z1 · Z]− E[Z1]E[Z]

σZ1σZ

]2
= kh2

pathway

(E[Z1 · Z])2

σ2
Z

(3.4)
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We compute the expectation E[Z1 · Z] by introducing a new variable Z(∼1) ≡ max(Z2, .., Zk),

which is the maximum over all liabilities except Z1. We can represent the trait Z as Z = max(Z1, Z
(∼1)).

The variables Z1, Z
(∼1) are independent, and we compute the expectation by summing over two

disjoint events - either the maximum is attained for Z1 (i.e., Z1 ≥ Z(∼1)), or it is attained for some

other Zi (i.e. Z1 < Z(∼1)),

E[Z1 · Z] =

∫ ∞
−∞

∫ ∞
−∞

ϕ(z1)gk−1(z(∼1))z1 max(z1, z
(∼1))dz1dz

(∼1) =

∫ ∞
−∞

ϕ(z1)z2
1

[ ∫ z1

−∞
gk−1(z(∼1))dz(∼1)

]
dz1 +

∫ ∞
−∞

gk−1(z(∼1))z(∼1)
[ ∫ z(∼1)

−∞
ϕ(z1)z1dz1

]
dz(∼1) =

∫ ∞
−∞

ϕ(z1)z2
1Φ(z1)k−1dz1 + (k − 1)

∫ ∞
−∞
−ϕ(z(∼1))2z(∼1)Φ(z(∼1))k−2dz(∼1) =

∫ ∞
−∞

Φ(z1)k−2ϕ(z1)z1

[
z1Φ(z1)− (k − 1)ϕ(z1)

]
dz1 (3.5)

Substituting eqs. (3.3,3.5) in eq. (3.4), the bottom-up heritability explained by all loci is,

h2
all =

h2
pathway

[ ∫∞
−∞Φ(z)k−2ϕ(z)z(zΦ(z)− (k − 1)ϕ(z))dz

]2∫∞
z=−∞Φ(z)k−1ϕ(z)z2dz − k[

∫∞
z=−∞Φ(z)k−1ϕ(z)zdz]2

(3.6)

3.3 Calculating the apparent heritability, h2
pop

Our goal is to calculate the value of h2
pop if the trait follows the LP model. We use the traditional

estimate from eq. (1.5), which requires the calculation of rMZ and rDZ . We calculate below

rR = corr(Z,ZR) for general degree of relationship R, which includes as special cases rMZ and rDZ .

If z and zR are the trait’s values for two family members of degree R, then

rR =
E[Z · ZR]− E[Z]E[ZR]

σZσZR
=
E[Z · ZR]− µ2

Z

σ2
Z

(3.7)

with µZ , σ
2
Z given in eqs. (3.2, 3.3), respectively. To compute E[Z·ZR], recall that Z = max(Z1, .., Zk)

and ZR = max(Z1,R, .., Zk,R), with Zi’s i.i.d., Zi,R i.i.d., and for each i the pair (Zi, Zi,R) has the

joint bivariate Gaussian distribution given in eq. (2.1), with correlation coefficient

ρR ≡ corr(Zi, Zi,R) = 2κRh
2
pathway + cR(1− h2

pathway) (3.8)

(we assume that shared environment is similar for any familial relationship.) We define gk,R(zR|z)
as the conditional density function of ZR, the trait’s value for a relative of degree R, given that the
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value of Z, the trait’s value for a given individual, is known. The conditional cumulative distribution

function is,

Gk,R(zR|z) = Pr(ZR ≤ zR|Z = z) = Pr(ZR ≤ zR|Z1 = z;Z2, .., Zk ≤ z) =

Pr(Z1,R ≤ zR|Z1 = z)
k∏
i=2

Pr(Zi,R ≤ zR|Zi ≤ z) = Φ
(zR − ρRz√

1− ρ2
R

)[ 1

Φ(z)

∫ z

t=−∞
ϕ(t)Φ

(zR − ρRt√
1− ρ2

R

)
dt
]k−1

(3.9)

where in the calculation we assume without loss of generality that the maximum for Z was

obtained by the first Gaussian Z1, and use the conditional Gaussian distribution as in eq. (2.2)

for each pair of liability (Zi, Zi,R). Differentiating with respect to ZR gives the conditional density

function gk,R,

gk,R(zR|z) =
1

Φ(z)k−1
√

1− ρ2
R

[ ∫ z

t=−∞
ϕ(t)Φ

(zR − ρRt√
1− ρ2

R

)
dt
]k−2

[
ϕ
(zR − zρR√

1− ρ2
R

)∫ z

t=−∞
ϕ(t)Φ

(zR − tρR√
1− ρ2

R

)
dt+ (k − 1)Φ

(zR − zρR√
1− ρ2

R

)∫ z

t=−∞
ϕ(t)ϕ

(zR − tρR√
1− ρ2

R

)
dt

]
(3.10)

We use gk and gk,R to express the expectation E[Z · ZR],

E[Z · ZR] =

∫ ∞
z=−∞

gk(z)z
[ ∫ ∞

zR=−∞
gk,R(zR|z)zRdzR

]
dz =

∫ ∞
z=−∞

gk(z)z

∫ ∞
zR=−∞

{
1

Φ(z)k−1
√

1− ρ2
R

[ ∫ z

t=−∞
ϕ(t)Φ

(zR − tρR√
1− ρ2

R

)
× dt

]k−2

[
ϕ
(zR − zρR√

1− ρ2
R

)∫ z

t=−∞
ϕ(t)Φ

(zR − tρR√
1− ρ2

R

)
dt+(k−1)Φ

(zR − zρR√
1− ρ2

R

)∫ z

t=−∞
ϕ(t)ϕ

(zR − tρR√
1− ρ2

R

)
dt
]}
zRdzRdz

(3.11)

Substituting eqs. (3.2, 3.3, 3.11) in eq. (3.7) gives the familial correlation,

rR =
1

k
∫∞
z=−∞Φ(z)k−1ϕ(z)z2dz −

[
k
∫∞
z=−∞Φ(z)k−1ϕ(z)zdz

]2×


∫ ∞
z=−∞

gk(z)z

∫ ∞
zR=−∞

{
1

Φ(z)k−1
√

1− ρ2
R

[ ∫ z

t=−∞
ϕ(t)Φ

(zR − tρR√
1− ρ2

R

)
dt
]k−2
×
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[
ϕ
(zR − zρR√

1− ρ2
R

)∫ z

t=−∞
ϕ(t)Φ

(zR − tρR√
1− ρ2

R

)
dt+

(k− 1)Φ
(zR − zρR√

1− ρ2
R

)
e−z

2
R/2

√
1− ρ2

R

2π
Φ
(z − zRρR√

1− ρ2
R

)]}
zRdzRdz−

[
k

∫ ∞
z=−∞

Φ(z)k−1ϕ(z)zdz
]2


(3.12)

The apparent (top-down) heritability h2
pop is then computed according to the ACE model by sub-

stituting eq. (3.12) in eq. (1.5).

3.4 Phantom heritability approaches 100% as k increases

According to the LP (k, h2
pathway, cR) model, the trait distribution is the (normalized) minimum of k

independent standard Gaussian random variables. Each locus contributes additively to one of these

Gaussians. Therefore, (see eq.(3.4)), the true heritability h2
all is proportional to the correlations

between each liability, Ψi, and the trait P = min(Ψi). We show that as k goes to ∞, the phantom

heritability πphantom goes to zero. Berman7 showed that
∑

i Ψi and P = min(Ψi) are asymptotically

independent as k → ∞. Hence, h2
all → 0, that is, the true heritability, measuring the additive

contribution of all loci to the trait, goes to zero. On the other hand, the apparent heritability may

not approach zero, or approach zero at a slower rate. Therefore, the ratio
h2
all

h2
pop

approaches zero as

k increases, and therefore,

πphantom = 1− h2
all

h2
pop

→ 1, as k →∞ (3.13)

This is easiest to see first for the special case where we set the parameter h2
pathway = 100%.

In this case, the additive contribution of all loci to each liability is 100% and the trait is entirely

determined by genetics (albeit in a non-linear way). Therefore rMZ = 1 irrespective of k. Since

rDZ ≤ 1/2 (again, for any k) we have h2
pop = 1 and πphantom → 100% as k →∞. Although h2

all goes

to zero, the total variance in the trait remains constant, since by definition the trait is normalized.

More generally, for a given observable population parameters rMZ , rDZ , and for each k, we can

fit h2
pathway(k) and cR(k) to match rMZ , rDZ precisely, and therefore h2

pop. Thus, the heritability

estimated from population data remains constant (the fitted parameter h2
pathway(k) goes to 1 as

k increases in order to achieve a constant non-zero h2
pop). However, as before, h2

all → 0, giving

πphantom → 1.
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4 The limiting pathway (LP∆) model for disease traits

4.1 Definition

Using the Limiting Pathway model LP (k, h2
pathway, cR) above, we define a disease trait whereby dis-

ease occurs if and only if LP (k, h2
pathway, cR) ≤ τ . We denote this trait by Z = LP∆(k, h2

pathway, cR, µ)

where µ is the disease prevalence, µ = 1−Φ(τ)k. (Z=1 corresponds to disease, Z=0 to non-disease.)

For a single pathway (k = 1), this definition reduces to the A∆ model above. From this defini-

tion, we can compute all parameters - including the risks to relatives of affected individuals, the

true (additive) heritability h2
all and the apparent heritability h2

pop that would be calculated from

epidemiologically observable parameters.

4.2 Calculating the risk to relatives of affected individuals

We can compute the risk for a family member of degree R can as follows. First, we compute the

joint 2× 2 matrix pR of probabilities that a given liability exceeds the threshold in each of the two

relatives:

pR =

(
pR(00) pR(01)

pR(01) pR(11)

)
(4.1)

That is, pR(ij) is the probability that one liability (say Ψ1) is at state i in a given individual,

and at a state j in a relative of degree R of this individual, where i, j = 1 means that the threshold

τ is exceeded and i, j = 0 means that the threshold is not exceeded. We mark the (zero/one) state

of the ith liability in a given individual by Zi - that is, Zi = 1 if and only if Ψi ≥ τ . Similarly, ZiR

denotes the state of the ith liability for a relative of degree R. We can compute the matrix pR as

in eq. (2.4):

pR(11) ≡ Pr(Zi = 1, ZiR = 1) =

∫ ∞
x=τ

ϕ(x)
[
1− Φ

( τ − 2κRh
2
pathwayx√

1− 4κ2
Rh

4
pathway

)]
dx (4.2)

where we denote h4
pathway = (h2

pathway)
2. Similarly,

pR(01) = pR(10) ≡ Pr(Zi = 0, ZiR = 1) = µ−
∫ ∞
x=τ

ϕ(x)
[
1− Φ

( τ − 2κRh
2
pathwayx√

1− 4κ2
Rh

4
pathway

)]
dx (4.3)

pR(00) ≡ Pr(Zi = 0, ZiR = 0) = 1− 2µ+

∫ ∞
x=τ

ϕ(x)
[
1− Φ

( τ − 2κRh
2
pathwayx√

1− 4κ2
Rh

4
pathway

)]
dx (4.4)

We express the probability of both relatives being affected in terms of the pR(ij) as follows,

Pr(Z = 1, ZR = 1) =

k∑
j=1

k∑
j′=1

Pr
( k∑
i=1

Zi = j,

k∑
i=1

ZiR = j′
)

=
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k∑
j=1

k∑
j′=1

min(j,j′)∑
l=max(0,j+j′−k)

(
k

l, j − l, j′ − l, k − j − j′ + l

)
pR(11)lpR(01)j+j

′−2lpR(00)k−j−j
′+l (4.5)

Here l denotes how many liabilities are common to the two relatives. The multinomial coefficient

determines the number of liabilities exceeding the threshold τ for both (l), each one (j− l and j′− l)
or none (k − j − j′ + l) of the individuals. We obtain the relative risk λR by normalizing by µ(D)2,

λR =
1

µ(D)2

k∑
j,j′=1

min(j,j′)∑
l=max(0,j+j′−k)

[(
k

l, j − l, j′ − l, k − j − j′ + l

)
pR(11)lpR(01)j+j

′−2lpR(00)k−j−j
′+l

]
(4.6)

4.3 Calculating the true heritability, h2
all, and apparent heritability, h2

pop

Since we measure heritability on the liability scale, the true additive heritability h2
all explained by

all loci is the heritability under the model LP (k, h2
pathway, cR) for quantitative traits, and is given

in eq. (3.6). To calculate the apparent heritability h2
pop we first compute the familial risks λMZ , λs

using eq. (4.6). Then, we convert the risks to correlations on the (single) liability scale by assuming

that in fact the A∆ model is the true disease model and solving for rMZ or rDZ in eq. (2.4). Finally,

we compute the heritability according to the ACE model as in eq. (1.5).

We also describe below how to compute the heritability on the observed disease scale, h2
all,∆.

Similarly to eq. (3.4), we have

h2
all,∆ = kh2

pathway

(E[Z1 · Z])2

σ2
Z

= kh2
pathway

(E[Z1 · Z])2

µ(1− µ)
(4.7)

We get,

E[Z1 · Z] =

∫ ∞
−∞

ϕ(z1)z1E[Z|z1]dz1 =∫ τ

−∞
ϕ(z1)z1[1− (1− µ)(k−1)/k]dz1 +

∫ ∞
τ

ϕ(z1)z1dz1 = (1− µ)(k−1)/kϕ(τ) (4.8)

where we have used the relation Φ(τ)k = 1− µ. Substituting in eq. (4.7) gives,

h2
all,∆ =

kϕ(τ)2

µ(1− µ)(2−k)/k
h2
pathway (4.9)

Eq. (4.9) is a generalization of the transformation from Dempster and Lerner4 , proven for k = 1

(the additive A∆ model), where h2
pathway = h2

all (see Section 8.3).

4.4 Generalized multiple pathways models

Substantial phantom heritability is not a unique property of the LP models. We can generalize the

LP model to a multiple pathway (MP) model, which we define as any trait T determined by the

output of multiple pathways:

T = u(Ψ1,Ψ2, ..,Ψk), (4.10)
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with the Ψi’s as above. We discuss some specific examples:

i. Several pathways below threshold. A trait might occur if j of the k pathways fall below

a threshold τ . The LP models represent the case where j = 1.

ii. Synthetic traits: All pathways below threshold. The special case where j = k is known

in genetics as a synthetic trait - that is, a trait that occurs when several components are all

disrupted (corresponding to max(Ψi) ≤ τ). Synthetic traits, are well known in genetics (see

e.g.8).

iii. Non-linear combinations. Various other non-linear function u can be used. For example,

we could choose u(Ψ1,Ψ2, ..,Ψk) = log[
∑

i e
αΨi ]. For α → 0, this reduces to additive traits.

When α → ∞, this reduces to the LP model (with max(Ψi) instead of min(Ψi)). In Supp.

Fig. 6 we display the heritability calculated for a model with k = 3 pathways as a function of

α. The phantom heritability increases with α: it is already at ∼ 33% for α = 2 and rapidly

approaches the levels for the LP model for α > 5.

iv. Linear combinations. Another interesting case is obtained by considering a linear combi-

nation of different LP models. Consider for example, two different LP models:

P (1) ≡ LP (k = 2, h2
pathway = 70%, cR = 50%) and

P (2) ≡ LP (k = 3, h2
pathway = 50%, cR = 50%) (4.11)

Also, consider the average of these two models (normalized to have variance 1):

P (1+2) =
1√
2
P (1) +

1√
2
P (2) (4.12)

The true, apparent and phantom heritabilities for these models are listed below in Supp.

Table 1.

Heritability Model P (1) Model P (2) Model P (1+2)

h2
all 51.3% 29.8% 40.6%

h2
pop 75.9% 53.5% 64.7%

πphantom 32.3% 44.3% 37.3%

Table 1: True, apparent and phantom heritabilities for the two LP models P (1), P (2) and their linear

combination P (1+2).

For P (1+2), the quantities of interest, including the phantom heritability, are all intermediate

between the levels for P (1) and P (2).

More generally, we have the following result:
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Proposition 1 Let Ψ(1), ..,Ψ(m) be different genetic architectures, where each architecture is

comprised of distinct causal loci, with the causal loci for different architectures being in linkage

equilibrium. Assume the architectures are normalized to have mean zero and variance one.

Let h2
all(i) be the individual bottom-up heritabilities (and similarly for h2

pop(i) and πphantom(i)).

Let Ψ =
∑

i αiΨ
(i) with the αi’s satisfying 0 ≤ αi ≤ 1,

∑
i α

2
i = 1. Let h2

all(Ψ) be the bottom-up

heritability of Ψ (and similarly for h2
pop(Ψ) and πphantom(Ψ)). Then, we have,

(a) h2
all(Ψ) =

∑
i α

2
i h

2
all(i)

(b) h2
pop(Ψ) =

∑
i α

2
i h

2
pop(i)

(c) πphantom(Ψ) = 1 − h2
all(Ψ)

h2
pop(Ψ)

is an intermediate value between the highest and lowest indi-

vidual phantom heritabilities.

Proof:

(a) Consider one causal locus xij with effect size βij on the i-th architecture Ψ(i), and variance

explained Vij = β2
ijV ar(xij). Denote βij(Ψ) the effect size of the same locus on the

combined trait Ψ. Then,

βij(Ψ) = Corr(xij ,Ψ) =
E[xijΨ]

σ(xij)
=

1

σ(xij)

∑
l

αlE[xijΨ
(l)] = αi

1

σ(xij)
E[xijΨ

(i)] = αiβij

(4.13)

Therefore, Vij(Ψ), the variance explained by xij of the trait Ψ is

Vij(Ψ) = βij(Ψ)2V ar(xij) = α2
iVij (4.14)

Summing over all loci within the i-th architecture gives
∑

j Vij(Ψ) = α2
i h

2
all(i). Summing

over all the individual architectures gives the desired result.

(b) In all three models we have considered, h2
pop is obtained by a linear combination of the

phenotypic correlation rR, for different family relationship R (see eqs. (1.5, 1.7, 1.9)).

It therefore suffices to show that rR(Ψ) =
∑

i α
2
i rR(i). This follows from linearity of

expectation,

rR(Ψ) = Corr(Z,Z(R)) = E[ZZ(R)] = E[(
∑
i

αiΨ
(i))(

∑
i

αiΨ
(i),R)] =

∑
i,j

αiαjE[Ψ(i)Ψ(j),R] =
∑
i

α2
iE[Ψ(i)Ψ(i),R] =

∑
i

α2
i rR(i) (4.15)

(c) Plugging in the formulas for h2
all and h2

pop gives the formula for πphantom for the combined

model. The resulting h2
all and h2

pop are a weighted average of the individual h2
all(i)’s and

h2
pop(i)’s. It easily follows by simple induction that πphantom lies within the range

[min
i
πphantom(i),max

i
πphantom(i)].

23



We conclude that a linear combination of different non-linear (e.g. LP) models yields an

intermediate value of the phantom heritability. Thus, if several biological processes each have

substantial phantom heritability, then an additive combination of the processes will also have

substantial phantom heritability.

If the architecture involves a non-linear combination of different non-linear (e.g. LP) models,

the phantom heritability is likely to increase further. An obvious example is an LP (m) model

of m different LP (n) model, which is in fact an LP (mn) model, with phantom heritability

greater than the individual LP (n) models.
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5 Numerical properties of LP models:

Traditional formulas mis-estimate heritability

In this section we describe the details of comparing the predictions provided by the different LP

models, to actual epidemiological data collected for various quantitative traits and diseases in hu-

man. We describe the data and models used to produce Fig. 1 in the main text and Supp. Figs. 2

– 5 (for both quantitative and disease traits).

5.1 Epidemiological data for quantitative traits

Data for 86 different traits from Hill et al.9 are shown in Supp. Fig. 2a. The data were kindly

provided by P. Visscher. They are given in Supp. Table 6.

5.2 Epidemiological data for disease traits

Data for 15 different diseases from Wray et al.10 are shown in Supp. Fig. 2b. They are given below

in Supp. Table 2.

Disease λMZ λs µ(%) λs (exp.) Dev.(λ) (%) h2
pop(%)

Depression 2.0 1.3 24.0 1.5 12.4 68.5

AMD 4.7 2.1 12.0 2.4 14.1 92.0

Myocardial infarction 4.6 3.2 5.6 2.4 -25.8 29.0

Breast cancer 4.1 2.2 3.6 2.2 -0.2 37.1

Type 2 diabetes 10.4 3.5 2.8 3.9 11.6 70.6

Asthma 6.6 3.4 19.0 2.2 -34.0 100.0

Rheumatoid Arthritis 12.2 3.5 1.0 4.2 20.4 55.7

Bipolar Disorder 60.0 7.0 1.0 11.2 59.7 100.0

Schizophrenia 52.1 8.6 0.9 10.5 22.5 94.5

Type 1 diabetes 79.0 14.0 0.5 13.7 -1.9 83.1

Multiple sclerosis 190.0 20.0 0.1 23.8 18.8 78.6

Crohn′s disease 600.0 64.0 0.1 47.2 -26.3 90.5

Ankylosis spondylitis 630.0 82.0 0.1 48.2 -41.2 92.0

Lupus(1) 841.0 29.0 0.1 53.2 83.3 100.0

Lupus(2) 774.0 65.0 0.0 58.3 -10.3 78.0

Table 2: Reported values of the relative risk for monozygotic twins (λMZ), relative risk for siblings (λs), and

prevalence µ for each disease. λs (exp.) is the value of λs which would be expected for a disease that follows an

additive A∆ model with no shared environment and the reported prevalence µ and monozygotic twin risk λMZ .

Dev.(λ) = λs−λs(exp.)
λs(exp.)

is the relative deviation in sibling relative risk compared to the expected value λs(exp.). h
2
pop

is the heritability obtained from µ, λs and λMZ assuming an additive A∆ model and using the ACE estimator.
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5.3 Data in Fig. 1a: Phantom heritability for quantitative traits

In Fig. 1a in the main text, we studied various quantitative traits defined by LP models. The data

in Fig. 1a were calculated using the formulas in Section 3. For each model, the relevant parameters

(rMZ , rDZ , h
2
all, h

2
pop, πphantom) are listed in Supp. Table 7.

We varied k = 1, .., 10, the number of pathways, h2
pathway = 0.1, 0.3, 0.5, 0.7, 0.9, the heritability

in each pathway, and CR = 0, 0.25, 0.5, 0.75, the fraction of environmental variance shared among

siblings or parent-offspring. h2
c,env denotes the shared environmental component in each pathway

(which is equal to cR(1−h2
pathway). We display also the monozygotic and dizygotic twin correlations,

rMZ and rDZ , respectively. For each LP model, we have computed the true (bottom-up) heritability

h2
all. The h2

all values should be contrasted with the top-down heritability h2
pop, computed using the

ACE model, with πphantom showing the lack of agreement between these two measures. In addition,

we display in Supp. Table 7 the values of h2
pop and πphantom for two other population estimates,

using the ADE and PO models (see Section 5.5 for more details on the alternative estimates).

5.4 Data in Fig. 1b: Phantom heritability for disease traits

In Fig. 1b in the main text, we studied various quantitative traits defined by LP models. The data

in Fig. 1b were calculated using the formulas in Section 4. For each model, the relevant parameters

(λMZ , λsib, h
2
all, h

2
pop, πphantom) are listed in Supp. Table 8.

5.5 Alternative heritability estimates

Fig. 1a (for quantitative traits) and Fig. 1b (for diseases) in the main text show the values of h2
pop

that would be calculated under the ACE estimate for the LP models, using eq. (1.5). We also

calculated the values of h2
pop for these same LP models using the two other estimates, h2

pop(ADE)

(see eq. (1.7)) and h2
pop(PO) (see eq. (1.9)). The data these all estimators is also displayed in Supp.

Table 8 (for quantitative traits) and Supp. Table 8 (for diseases).

Consider, for example, the P ∗ model LP (k = 4, h2
pathway = 50%, cR = 50%), where 50% of the

environmental variance (and thus 25% of the overall variance) in each pathway is shared. The true

heritability is h2 = h2
all = 25.4%. The apparent heritabilities are h2

pop(ACE) = 54.0%, h2
pop(ADE) =

79.2% and h2
pop(PO) = 70.8%, yielding phantom heritabilities of 52.9%, 67.9% and 64.1%, respec-

tively.

Some observations:

• The true heritability h2
all does not depend on cR, the proportion of the environmental variance

that is shared. However, the apparent heritability h2
pop for all three estimators is inflated by

shared environment (with the exception of the ACE estimator in the case of additive models,

LP(1)).

• Genetic interactions cause large inflation of the ACE estimator.

• Genetic interactions also inflate the PO estimator, although somewhat less so.
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• As noted in Section 1, genetic interactions lead to underestimates for the ADE estimator.

However, shared environment causes substantial overestimation, due to the term 3Vc,env ap-

pearing in the error term (see eq.(1.8)). As a result, the ADE model actually gives the highest

phantom heritability for the P ∗ model.

• For disease traits, the picture is largely similar. An important major difference is that the

ADE estimator for diseases can give substantial phantom heritability even when there is no

shared environment. For example, for the model LP (k = 3, h2
pathway = 70%, cR = 0%), the

ADE estimator gives 25.9% phantom heritability. This is lower than values given by the ACE

estimator (60.6%) and the PO estimator (42.7%), but still considerable.
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6 Crohn’s disease, schizophrenia and other traits

6.1 Crohn’s disease

A recent meta-analysis with ∼ 15, 000 cases and ∼ 6, 000 controls reported 71 loci associated with

Crohn’s disease.11 We analyzed these loci, together with three previously known independent

variants at the NOD2 locus, in terms of their contribution to heritability [M. Daly, personal com-

munication]; hence we refer hereafter to this set as ’the 74 loci’. For our analysis, we used values

for the heritability h2
pop = 50% and the prevalence µ = 0.1% reported in the literature.11,12 If we

assume that the disease follows an additive model A∆ with these parameters, then the current set

of 74 variants explain 10.8% of the phenotypic variance and 21.5% of the heritability. Under this

model, the relative risks are λMZ = 54.3 and λs = 10.3.

We then fit an LP∆ (3) model with the same prevalence µ, and relative risks, λMZ and λs.

The model is LP∆ (k = 3, h2
pathway = 47.6%, cR = 16%, µ = 0.1%). We assigned the 74 loci

randomly to the 3 different pathways. Because the LP(3) model was chosen to fit the population

parameters precisely, it obviously cannot be distinguished from the additive model based on the

population parameters. Yet, the true heritability for the LP(3) model is only h2
all = 18.7% (vs 50%

for the additive model) and thus the phantom heritability is πphantom = 62.6%. Under this model,

the known variants explain 57.5%(= 10.8/18.7) of the heritability. The contribution of all loci to

heritability under both models is displayed in Supp. Table 9.

Above, we chose one specific set of epidemiological parameters to illustrate the problem. Differ-

ent epidemiological estimates available in the literature (for prevalence, relative risk and heritability)

yield different values for the total heritability and therefore for the heritability explained, as shown

below in Supp. Table 3.

µ(%) λMZ λs Model h2
pathway(%) cR(%) h2

s(%) h2
all(%) Vc(%) πphantom(%) πexplained(%)

0.1 (11) 54.3 10.3 A∆ 50 (11) 0 10.8 50 0 0 21.5

LP∆(3) 47.6 16 10.8 18.7 18.2 62.6 57.5

0.1 (11) 230 27 (12) A∆ 77.3 0 10.8 77.3 0 0 13.9

LP∆(3) 70.1 34.7 10.8 27.6 23.7 64.3 39

0.2 (13) 35.1 7.92 A∆ 50 (11) 0 12.1 50 0 0 24.3

LP∆(3) 47.6 17 12.1 19.1 19.4 61.9 63.7

0.2 (13) 250 35 (14) A∆ 82.8 10.3 12.1 82.8 1.8 0 14.7

LP∆(3) 72.5 73.5 12.1 29 32.2 64.9 41.8

Table 3: Cumulative assumed and actual variance explained by associated SNPs for Crohn’s disease. (Source: Franke

et al.11). The table shows various estimates for prevalence (µ), monozygotic twin (λMZ) and sibling (λs) relative risks

obtained from different sources. The cited sources are shown in parenthesis next to numbers in the table. h2
s is the

total variance explained under an A∆ model for the 74 known loci. For each set of parameters we fitted an additive

A∆ model and a non-additive LP model LP∆ (3). h2
pathway, the heritability in each pathway and cR, the fraction

of shared environment in each pathway, are the fitted model parameters. We then computed h2
all, the heritability

explained by all loci, and the resulting πexplained and πphantom under either the A∆ or the LP∆ model.

While both models fit the data, the additive model has no phantom heritability and the LP∆ (3) model has 60− 65%

phantom heritability.
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However, our results are robust to the choice of epidemiological parameters in that the phantom

heritability under the LP∆(3) model is broadly similar: > 60% in all cases examined.

The additive and non-additive models thus cannot be distinguished based on the relative risks

to MZ twins and sibs (λMZ and λsib). We further explored whether the models can be readily

distinguished based on risks to more distant relatives, such as grandchildren and first cousins (λg

and λcousin). This turns out to be difficult due to two challenges:

i. The first challenge is that one must specify the extent of shared environment for each type

of relative pair. Many diseases have significant shared environment that extends beyond

family households. (In particular, the risk for Crohn’s disease is believed to be decrease by

some environmental exposures, and may be increased by others. Another example is multiple

sclerosis, which is influenced by the latitude of residence during one’s first two decades of

life.) We examined models where the shared environment for grandchildren and cousins is

x = cR/csib = 25%, 50%, or 75% of the level for sibs. (see Table 4).

Model Vc,sib(%) λMZ λsib λg λcousin

A∆ 0 54.3 10.3 3.58 1.96

LP∆ (3)(x = 25%) 18.2 54.3 10.3 2.43 1.58

LP∆ (3)(x = 50%) 18.2 54.3 10.3 2.86 1.82

LP∆ (3)(x = 75%) 18.2 54.3 10.3 3.38 2.12

Table 4: The table shows the relative risk to MZ twins, sibs, grand-children and cousins of individuals affected by

Crohn’s disease, according to the additive A∆ and LP∆ (3) models, for different levels of shared environment x for

distant relatives. The shared environment variance for sibs is csib = 16% (corresponding to Vc,sib = 18.2%). x is the

ratio cg/csib(= ccousin/csib), quantifying the level of shared environment for grand-children and cousins, compared to

the level of shared environment for siblings.

The results show that the relative recurrence risks depend on the extent of shared environment

among grandchildren and cousins. In practice, it may be difficult to achieve sufficient precision

to distinguish among these models (let alone other models).

ii. The second challenge is that good data are lacking concerning risks to grandchildren and

cousins for Crohn’s disease (and for most diseases). It is difficult to obtain data with accurate

diagnosis and without ascertainment biases from sufficiently large samples to provide adequate

precision. In addition, comparisons of grandparents and grandchildren may be confounded by

secular trends affecting disease prevalence and environmental exposure.

In summary, it is not simple to distinguish among models involving even a modest number of

parameters based on a small number of observables (e.g., µ, λMZ , λsib, λg and λcousin).

6.2 Schizophrenia

Using epidemiological data for schizophrenia from refs15,16,17 we fit both an LP∆(1) (that is, addi-

tive) and an LP∆(2) model. Since MZ risk is available for only one data set and is less reliable, we
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fitted the models using the sibling risk λs and the grand-child risk λg. We then examined the risk

to other relatives (Supp. Table 5).

Both models fit the data reasonably well (see Supp. Fig. 7 and Supp. Table 5), with the

LP∆(2) model arguably showing a somewhat better fit. A striking observation from Supp. Fig. 7

is that the two models produce very small differences in the population correlations but yield a

large difference in phantom heritability. The correlation among relatives follows a straight line for

the A∆ (additive) model and a curve that is just slightly concave up for the LP∆ (2) model. Yet,

the phantom heritability is 0% for the A∆ (additive model) and 46% for the LP∆(2) model. This

observation underscores how challenging it is to detect the presence of genetic interactions based

on phenotypic correlations.

Risch et al.16 A∆ LP∆ (2) Lichtenstein et al.17 A∆ LP∆ (2)

Prevalence (%) 0.85 0.85 0.85 0.41 0.41 0.41

λMZ 52.1 37.2 44.1 - 37.8 50.3

λs 8.6 8.6 8.6 8.55 8.55 8.55

λg 3.3 3.36 3.3 2.95 3.29 2.95

λcousin 1.8 1.91 1.98 2.29 1.88 1.7

h2
all(%) - 75.8 45.9 - 61.7 40.8

h2
pop(%) - 75.8 85.3 - 61.7 75.3

h2
pathway(%) - 75.8 78.8 - 61.7 71.3

cR(%) - 0 20.0 - 0 2.0

Vc(%) - 0 4.8 - 0 0.6

πphantom(%) - 0 46.2 - 0 45.9

Table 5: Epidemiological data and model fit for Schizophrenia. Shown are data obtained for disease prevalence (µ)

and relative risk to monozygotic twins, siblings, grand-children and cousins (λMZ , λs, λg, λcousin respectively) obtained

from two different sources. Given the values of µ, λs and λg (shown in bold-face) from each of the two sources, we

then fit two models (A∆ and LP∆ (2)) and show the values of h2
pathway, cR, h

2
all, h

2
pop and πphantom associated with

each model.

6.3 Differences among traits

Under the LP model, phantom heritability increases with the number of pathways. This observation

suggests that, in general, traits with greater biological complexity may have greater phantom heri-

tability. In this context, it is interesting to observe that genetic studies tend to explain more of the

apparent heritability for “simpler” traits than for more “complex” traits. For example, GWAS has

explained ∼50% of the apparent heritability for the regulation of the levels of fetal hemoglobin.18

By contrast, GWAS have explained much less of of the apparent heritability for arguably more

“complex” traits - such as 2% for body-mass index19 or < 5% for age of onset of menarche.20 These

differences may reflect both the number of loci involved in the traits (indicating that many are still

to be discovered) and the physiological interactions underlying the traits (resulting in higher levels
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of phantom heritability).
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7 Detecting epistasis among variants

7.1 Experimental evidence for epistasis in humans

Despite considerable efforts, few well-replicated instances of epistasis in common human disease

and trait genetics have been discovered thus far. The only examples to date involve interactions

featuring at least one locus with a large marginal effect, such as HLA. We describe four examples

below.

Two recent GWAS, in ankylosing spondylitis21 and psoriasis,22 discovered interactions between

two different HLA alleles and ERAP1. (In ankylosing spondylitis, the HLA-B27 allele has an odds

ratio of 40.8, and in psoriasis the HLA-C allele has an odds ratio of 4.66.) HLA also plays a role in

an interaction effect described in a GWAS of Type 1 diabetes. (In Type 1 diabetes, HLA has a main

effect of 5.5, but acts non-additively with the risk of all other alleles considered cumulatively.23)

Finally, interaction between RET and EDNRB in Hirschsprung’s disease was discovered in a

genome-wide linkage study,24 in which RET was strongly associated with disease (log-odds score of

5.6).

If the magnitude of interaction effects scales with marginal effects, then current studies will

only be powered to see interactions in which the main effect is large. Thus, many more epistatic

interactions between loci with more modest marginal effect size (e.g. 1.1-1.5 as is typical in recent

GWAS) might well exist but go undetected due to lack of power.

7.2 Tests for detecting associations and their power

The main problem in detecting these interactions is lack of statistical power. In this section we

present three tests for identifying associations between variants or their interactions and a pheno-

type. We then describe how to compute detection power for the three tests in a GWAS with n

individuals, where we consider for simplicity that n/2 individuals are cases and n/2 are controls.

We assume that the genetic architecture used to generate the data follows the LP model

LP∆ (k, h2
pathway, cR, µ) for disease from before. When testing the power of specific loci (or their

interactions), we need to fully specify the effect of a single locus (this is not determined by the

definition of the LP∆ model). For simplicity, we assume that each pathway consists of m identical

loci, where each locus has a single risk allele with frequency f . For a given LP model, the frequency

f and the number of loci m determine uniquely the effect of each locus on the trait (represented

as genetic relative risk η), and the interactions between different loci (discussed later). We thus

compute power as a function of the parameters k, h2
pathway, cR, µ, m and f . The three tests we

consider are

i. a test for detection of association of a single locus with disease.

ii. a test for detection of a pairwise interaction between two individual loci.

iii. a test for detection of a pairwise interaction between two pathways.
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In all cases, we compute power efficiently using analytical approximations, which enables us to

explore a wide parameters space, including very large sample sizes (on the order of millions). We

plot in Supp. Fig. 8 the detection power as function of sample size for the three tests.

7.3 Detecting the marginal effect of each SNP

We first focused on detecting the individual variants. We used the Cochran-Armitage trend test,

which detects an association between a (diploid) SNP and the value of a binary trait (e.g. dis-

ease).25,26 We computed power for this test using an analytic approximation. The test statistic

has an approximate chi-square distribution χ2(1) under the null hypothesis, and a non-central chi-

square distribution χ2(1, NCP ) under an alternative model. The non-centrality-parameter NCP

is a function of the effect size, determined by µ, f and the genetic relative risk η, and the sample

size n. To calculate NCP for a locus with risk allele frequency f and effect size η, we first need to

compute the observed 2x3 joint probability table p = {pij} for genotype and disease status,

pij ≡ Pr(Z = i, g(F ) + g(M) = j), ∀i = 0, 1, j = 0, 1, 2 (7.1)

where g(F ) and g(M) are the paternal and maternal alleles at a given locus, respectively. The

table p is a function of the parameters µ, f and η. We compute p = {pij} in a few steps,

i. We denote the joint 2x2 table of one allele and disease status in a random sample drawn from

the population by pµ. It is given by,

pµ,ij = f j(1− f)1−j[1− µηj

1− f + fη

]i[ µηj

1− f + fη

]1−i
, ∀i, j = 0, 1 (7.2)

ii. In a balanced study design, with an equal number of cases and controls, the observed joint

frequencies frequencies of the allele and disease status change to

p 1
2
,ij =

pµ,ij
2µi(1− µ)1−i , ∀i, j = 0, 1 (7.3)

iii. We compute the genotype 2x3 table from the allele 2x2 table as,

pij = 22−|j−1|p2−j
1
2
,i0
pj1

2
,i1
, ∀i = 0, 1, j = 0, 1, 2 (7.4)

iv. Let qij denote the conditional probability of genotype j given disease status i. We compute q

from p as

qij ≡ Pr(x = j|z = i) =
pij∑2
j′=0 pij′

(7.5)

v. We express the non-centrality parameter NCP in terms of the qij ’s (see e.g.27,28). When the

number of cases and controls are equal (n/2), the formula for NCP is,
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NCP (n, f, η) =
n
[∑2

i=0 i(q1i − q0i)
]2

2
∑2

i=0 i
2(q0i + q1i)−

[∑2
i=0 i(q0i + q1i)

]2 (7.6)

We next write an explicit expression for the power in terms of the non-centrality parameter

using the χ2 distribution. We denote by Fχ2(x; d,NCP ) the cumulative non-central χ2 distribution

function with d degrees of freedom and non-centrality parameter NCP at the value x (that is,

the probability that a χ2(d,NCP ) random variable is smaller than x). When NCP is omitted,

Fχ2(x; d) denotes the central χ2 distribution. F−1
χ2 is simply the inverse χ2 cumulative distribution

function. With this notation, the power is,

Power(n, f, η, α) = 1− Fχ2

(
F−1
χ2 (1− α; 1); 1, NCP (n, f, η)

)
(7.7)

that is, the power is the area under the (true) alternative non-central χ2 distribution to the right of

the value F−1
χ2 (1−α; 1), which is the expected 1−α quantile under the (null) central χ2 distribution.

We used significance level α = 5x10−8, a figure often used in GWAS for genome-wide significance.

7.4 Detecting interaction between a pair of SNPs

We next focused on detecting pairwise interactions between individual variants. We tested for

deviations from the A∆ model for a pair of identified loci. Specifically, for two loci g1 and g2, and

a trait z (all three are binary 0/1 variables) we compute the expected and observed joint 2x2x2

tables p
(A∆)
ij1j2

, p
(LP )
ij1j2

, obtained under the (false) null model A∆ and the (true) alternative model LP,

respectively.

In a sample drawn at random from the population, the expected joint 2x2x2 table p
(A∆)
µ,ij1j2

under

the A∆ model is,

p
(A∆)
µ,ij1j2

= Pr(Z = i, g1 = j1, g2 = j2) =

f j1+j2(1− f)2−j1−j2
[
1− Φ(τ − βg′1 + βg′2√

1− 2h2
)
]i

Φ(τ − βg′1 + βg′2√
1− 2h2

)1−i (7.8)

where β is the effect size of each of the genotypes under the A∆ model, computed from from f, η and

µ by solving eq. (2.7) for β (with τ(µ) = Φ−1(µ)), and g′i = hi − f are the normalized genotypes.

The observed 2x2x2 table p
(LP )
µ,ij1j2

under the (true) LP model is,

p
(LP )
µ,ij1j2

= Pr(Z = i, g1 = j1, g2 = j2) =

f j1+j2(1− f)2−j1−j2
[
1− Φ(τ)k−2Φ(τ − βg1√

1− h2
)Φ(τ − βg2√

1− h2
)
]i

[
Φ(τ)k−2Φ(τ − βg1√

1− h2
)Φ(τ − βg2√

1− h2
)
]1−i

(7.9)

In a balanced study, with equal number of cases and controls, the above two tables change.
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p
(A∆)
ij1j2

=
p

(A∆)
µ,ij1j2

2µi(1− µ)1−i ; p
(LP )
ij1j2

=
p

(LP )
µ,ij1j2

2µi(1− µ)1−i (7.10)

The non-centrality parameter is,

NCP2(n, f, η) = n
∑
i,j1,j2

(p
(LP )
ij1j2
− p(A∆)

ij1j2
)2

p
(A∆)
ij1j2

(7.11)

and power is given via the χ2 approximation (in similar to eq. (7.7)),

Power2(n, f, η, α) = 1− Fχ2

(
F−1
χ2 (1− α; 1); 1, NCP2(n, f, η)

)
(7.12)

We used a significance level α that accounts for the multiplicity testing among all pairs of loci,

α = 0.01/
(
km
2

)
.

7.5 Detecting interaction between two pathways

In principle, the power to detect genetic interactions might be increased by looking at the aggregate

effects of sets of genes. One possibility which we describe below would be to place genes into

relevant sets (for example, common pathways) and test for “meta-interactions” between these sets.

Substantial biological knowledge about the underlying physiology might be required to organize the

genes into pathways and infer key aspects of the genetic architecture.

Nevertheless, we devised a test to detect interactions between the two pathways, under the

assumption that a subset of the loci in the two pathways are known and can be correctly assigned

to the two pathways. We assume that in each pathway Ψi multiple loci with small effects were

detected. We denote the set of detected loci as Si. Thus, in similar to eq. (3) in the main text, the

i-th pathway can be partitioned as:

Ψi = xi + yi + εR + εu (7.13)

where xi =
∑

j∈Si βjgi,j and yi =
∑

j∈S̄i βjgi,j denote the additive contribution of the detected and

undetected loci in pathway i, respectively.

We model the additive contributions of detected loci as a Gaussian xi ∼ N(0, h2
i,known) that

explains h2
i,known of the total variance of the pathway Ψi. We test for an interaction between the

detected loci in two pathways. For simplicity we assume these are (x1, x2), representing interaction

between the first two pathways. In a balanced case-control study, the available data are a collection

of n triplets (x1, x2, z) for each individual. x1 and x2 are two real numbers, representing the additive

contribution of all loci in a given pathway, and z is a binary variable representing disease state (with

z=1 or z=0 in equal numbers of individuals). Under the null hypothesis, the A∆model is correct, and

the probability of disease is Pr(Z = 1|x1, x2) = Φ(β0 +β1x1 +β2x2). Since the correct architecture

would not be known in advance, we performed a goodness-of-fit test for the A∆ model. We divided

the (x1, x2) plane into L2 equi-probable regions Rij . To avoid bins with few counts, we chose the

value of L such that on average, each bin will have at least 50 data points,

L = b
√
n/50c (7.14)
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We then computed the bin boundaries as the quantiles of the standard Gaussian distribution func-

tion,

b0 = −∞, bL =∞, bi = Φ−1(i/L) ∀i = 1, .., L− 1 (7.15)

In each such region, we compared the observed number of diseased individuals Oij , to the expected

number under the A∆ model, E
(A∆)
ij . The goodness-of-fit test statistic measures the deviations of

Oij from E
(A∆)
ij ,

S =
∑
ij

(
Oij − E(A∆)

ij

)2
E

(A∆)
ij

(7.16)

We compute the observed value Oij in each bin as,

Oij =
∑
l

zl · 1{x1,l∈[bi−1,bi],x2,l∈[bj−1,bj ]} (7.17)

where the sum is on affected individuals (zl = 1) whose known liabilities x1,l, x2,l are in the ith and

jth bins, respectively. We compute the expected number of affected individuals E
(A∆)
ij in the bin

by integrating over the densities of each xi, and for each (x1, x2) pair writing the expected value of

the disease status variable z,

E
(A∆)
ij =

∫ bi
x1=bi−1

∫ bj
x2=bj−1

Pr(x1, x2, z = 1)dx1dx2∫ bi
x1=bi−1

∫ bj
x2=bj−1

Pr(x1, x2)dx1dx2

=

L2

∫ bi+1

x1=bi

∫ bj+1

x2=bj

ϕ(x1)ϕ(x2)Φ
(
τ − (x1 + x2)hi,known√

1− 2h2
i,known

)
dx1dx2 (7.18)

Under the null-hypothesis, S has an approximate chi-square distribution, S ∼ χ2(L2). Under

the alternative, S has a non-central chi-square distribution S ∼ χ2(L2, NCP ). The non-centrality

parameter NCP , measuring the (expected) deviation of Oij from its expectation under the (wrong)

A∆ null model, E
(A∆)
ij , is given by the formula,

NCPpath =
∑
i,j

(
E

(LP )
ij − E(A∆)

ij )2

E
(A∆)
ij (1− E(A∆)

ij )
(7.19)

where E
(LP )
ij = E[Oij ] is the expected number of disease individuals in bin (i, j) under the alternative

(true) LP model. The formula for E
(LP )
ij under the alternative LP model is (compare to eq. (7.18)),

E
(LP )
ij = L2

∫ bi

x1=bi−1

ϕ(x1)Φ
(
τ − x1hi,known√

1− h2
i,known

)
dx1

∫ bj

x2=bj−1

ϕ(x2)Φ
(
τ − x2hi,known√

1− h2
i,known

)
dx2

(7.20)

Using this approximation, we computed power as the tail probability under the non-central

chi-square distribution, in similar to eq. (7.7):

Powerpath(n, h2
i,known, α) = 1− Fχ2

(
F−1
χ2 (1− α;L2);L2, NCPpath(n, h2

i,known)
)

(7.21)

We used a significance level α accounting just for multiplicity in testing all pairs of pathways,

α = 0.01/
(
k
2

)
.
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8 Consistent estimator h2
slope(κ0): Proof of Theorem 1

In the main text, we describe a top-down estimator h2
slope(κ0) for h2

all that is provably consistent

even in the presence of genetic interactions. In this section, we provide the proof. Our estimator is

based on observing how the phenotypic correlation between individuals varies with the proportion

of their genomes in large IBD segments. A few important definitions and comments:

• By a “large IBD segment”, we mean a segment that is identical-by-descent (having descended

from a recent common ancestor) and exceeds a specified threshold L in length (measured in

centimorgans). The threshold L determines the expected number Ng of generations to the

common ancestor.

• By the IBD-sharing level between two individuals, we mean the probability that a randomly

chosen genomic position on homologous chromosomes from each of the individuals lies in a

large IBD segment shared by the two individuals. Thus IBD sharing takes values between 0

and 1.

• Large IBD segments can be readily recognized by virtue of two individuals sharing alleles at

a large number of consecutive markers across a region. Several algorithms for detecting large

IBD segments have been described recently.29,30,31 By focusing on large IBD segments, we

ensure that the segments have a recent common ancestor. This avoids the issues with defining

and identifying small IBD segments discussed by Powell et al.31

• We will assume that large IBD segments are genetically identical at the causal loci within

the segment. Rarely, apparently IBD segments will have different alleles at a causal locus if

a new mutation has occurred since the common ancestor. Our estimate of h2
all will therefore

exclude heritability due to such extremely recent mutations. In practice, the probability-per-

generation of new mutations is extremely low (∼2 × 10−8), and the total probability of new

mutations since the common ancestor can be bounded (as noted above, the length threshold

L sets the expected number Ng of generations to the common threshold). Extremely new

mutations could play a significant role only if the alleles responsible for a trait (i) largely

act dominantly and (ii) have extremely high selective coefficients, so that they are eliminated

extremely rapidly from the population.

8.1 Heritability on the observed scale

We now turn to the proof of Theorem 1. The theorem applies to both quantitative traits and to

disease traits, when measured on the observed (0,1) scale.

Theorem 1 Consider a population in which one can detect large segments shared IBD between

individuals. Given individuals I1 and I2, let κ = κ(I1, I2) denote the proportion of their genomes

shared in large IBD segments. Let κ0 denote the average value of κ across the pairs in the popula-

tion. For a trait Z = Ψ(G,E), let ρ(κ) denote the average phenotypic correlation between pairs of
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individuals who share proportion κ of their genomes in large IBD blocks. Define the “heritability at

unrelatedness”, h2
slope(κ0) = (1− κ0)ρ′(κ0).

Then, regardless of the genetic architecture of the trait,

h2
slope(κ0) = h2

all (8.1)

In other words, the true heritability, h2
all, equals (1− κ0) times the rate of change of phenotypic

correlation around the average level of IBD-segment sharing, ρ′(κ0).

Thus, if ρ̂′(κ0) is a consistent estimator of ρ′(κ0), obtained from pairwise genotypic and pheno-

typic similarities in a population sample, then ̂h2
slope(κ0) = (1 − κ0)ρ̂′(κ0) is a consistent estimator

of h2
all.

Proof: We will consider the distribution of genotypes and phenotypes for pairs (I1, I2) of individuals

in the population, conditional on their degree of IBD sharing. For individual Ij (for j = 1,2), we will

denote the genotype by Gj = (gj1, gj2, .., gjn) and the phenotype by Zj = Ψ(Gj , Ej). To simplify the

proof, we will write the variant loci on the maternally and paternally inherited genomes separately,

so that each genotype gji is a binary variable.

i. Genotypic correlation. Let ϑ(κ) denote the conditional probability distribution on pairs

(G1, G2) of genotypes, conditional on the individuals having average IBD sharing level κ.

(That is, ϑ(κ)[(G1, G2)] denotes the conditional probability of the genotype (G1, G2).) In

particular, ϑ(κ0) is the background distribution for the whole population, in which G1 and G2

are independent. We similarly let ϑi(κ) denote the conditional probability distribution over

pairs (g1i, g2i) of genotypes at the i-th locus, conditional on the individuals having average IBD

sharing level κ.

Because the variant sites are assumed to be in linkage equilibrium, ϑ(κ) is the product of the

distributions ϑi(κ):

ϑ(κ)[(G1, G2)] =

n∏
i=1

ϑi(κ)[(g1i, g2i)] (8.2)

We can express ϑi(κ) as a mixture of the distribution ϑi(1), conditional on IBD-sharing at

the i-th locus and the distribution ϑi(0), conditional on non-IBD-sharing at the i-th locus:

ϑi(κ) = κϑi(1) + (1− κ)ϑi(0). (8.3)

One can then show that,

ϑi(κ0 + ε) =
ε

1− κ0
ϑi(1) +

(
1− ε

1− κ0

)
ϑi(κ0). (8.4)

(To see this, write eq. (8.3) for ϑi(κ0) and for ϑi(κ0 + ε). Solve for ϑi(0) in eq. (8.3) for

ϑi(κ0) and substitute it in eq. (8.3) for ϑi(κ0 + ε).) For notational convenience below, we will

rewrite eq. (8.4) as

ϑi(κ0 + ε) =
ε

1− κ0
ϑ∗i (1) + (1− ε

1− κ0
)ϑ∗i (0) (8.5)
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where ϑ∗i (1) = ϑi(1) and ϑ∗i (0) = ϑi(κ0). Using the equations above, we have:

ϑ(κ0 + ε) =

n∏
i=1

ϑi(κ0 + ε) =

n∏
i=1

[ ε

1− κ0
ϑ∗i (1) + (1− ε

1− κ0
)ϑ∗i (0)

]
=

∑
T=(t1,t2,...,tn)∈Zn2

[
ε

1− κ0
]w(T )[1− ε

1− κ0
]n−w(T )

n∏
i=1

ϑ∗i (ti) (8.6)

where Zn2 is the set of binary vectors of length n and w(T ) is the number of non-zero entries

in the vector T .

ii. Phenotypic correlation. Consider the phenotypic correlation for individuals with IBD shar-

ing level κ. Because Z1 and Z2 have expected value 0, we have:

ρ(κ) = Eϑ(κ)[Z1Z2] =
∑

(G1,G2)

ϑ(κ)[(G1, G2)]E[Z1Z2|G1, G2]. (8.7)

where ED denotes the expectation under the distribution D. We want to calculate the derivative

ρ′(κ0). To calculate ρ′(κ0) = d
dεϑ(κ0 + ε)|ε=0, we examine eq. (8.6) as ε → 0. Because all

terms corresponding to vectors T with w(T ) > 1 have derivative 0 at κ0, we have:

ρ′(κ0) =
1

1− κ0

[
− nϑ(κ0) +

n∑
i=1

ϑ(Ti)
]

(8.8)

where Ti is the vector that is all zero except at position i. We thus have

ρ′(κ0) =
1

1− κ0

[
− nEϑ(κ0)[Z1Z2] +

n∑
i=1

Eϑ(Ti)[Z1Z2]
]

(8.9)

We need two facts. First, we have Eϑ(κ0)[Z1Z2] = 0. This holds because Z1 and Z2 are in-

dependent under ϑ(κ0), which is the unconditional background distribution for the population.

Second, Eϑ(Ti)[Z1Z2] = Vi, where Vi is the additive variance explained by the i-th variant.

This follows because

Eϑ(Ti)[Z1Z2] = E[Z1Z2|g1i = g2i] =
∑
j

Pr(g1i = j)E[Z1|g1i = j]2 = E[Z2]− V ar[Z|gi] = Vi.

(8.10)

where we have used the facts that (i) when the two individuals share only the i-th variant

by descent, Z1 and Z2 are conditionally independent given the value of gi, and (ii) E[y]2 =

E[y2]− V ar[Y ] for any random variable y. Finally, we have:

ρ′(κ0) =
1

1− κ0
[0 +

n∑
i=1

Vi] =
1

1− κ0
VA =

1

1− κ0
h2
all. (8.11)
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Some notes concerning Theorem 1:

• The proof makes no assumption on the genetic architecture of the trait: it may involve

dominance at a locus or genetic interactions among loci. (By denoting maternal and paternal

alleles separately, dominance is simply a special case of a genetic interaction - that is, between

the maternal and paternal alleles at a locus.)

• The proof makes no assumption that IBD blocks contain only a single causal variant.

• The proof assumes that the proportion of genome shared in large IBD blocks can be mea-

sured accurately. Because we restrict attention to “large” IBD blocks (exceeding a specified

threshold length L), identity-by-descent can be reliably detected by virtue of allele sharing

at a large number of consecutive genetic loci. The precise boundaries of the IBD block may

not be measured perfectly, because small regions of IBS sharing at the edge of the block may

be inaccurately scored as IBD. This will introduce some noise in the estimate. However, the

proportional impact on the overall estimate of IBD sharing is expected to be small for large

IBD blocks and could be eliminated by using complete genome sequence information.
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8.2 Ascertainment bias in Case-Control studies

Theorem 1 provides a consistent estimator of the heritability for both quantitative and disease

traits, provided that the slope is measured in a representative sample from the population. For

disease traits, it is typical to use case-control studies, where the proportion of cases is larger than

the proportion in the population. Using a non-representative sample creates a bias in the derivative

ρ′ that must be corrected. Suppose that a disease has prevalence µ, and we use a case-control

study in which the proportion of affected individuals is µcc. As shown in ref.32 , the derivative in a

representative sample, ρ′(κ), is related to the derivative calculated in the case-control study, ρ′cc(κ),

by the following formula:

ρ′(κ) =
µ(1− µ)

µcc(1− µcc)
ρ′cc(κ) (8.12)

8.3 Heritability on a hidden liability scale

As discussed in Section 2, geneticists often assume that disease traits arise from a liability threshold

model. They typically compute heritability not on the observed disease scale, but rather with

respect to the unseen liability scale. In the special case in which the liability is a strictly additive

function of the genotypes that has a normal distribution, there is a simple conversion between the

heritability on the disease and liability scales:4

h2
S =

µ(1− µ)

ϕ(xµ)2
h2
S,∆ (8.13)

where S is a set of variants, h2
S is the heritability on the liability scale attributable to the variants

in S, h2
S,∆ is the heritability on the disease scale attributable to the variants in S, µ is the disease

prevalence, xµ = Φ−1(1− µ) is the threshold and ϕ is the standard Gaussian density function.

Geneticists like to use the liability scale when estimating the total additive heritability, because

calculations on the liability scale tend to be less sensitive to uncertainty about the precise prevalence.

However, the choice of scale is irrelevant when calculating the fraction
h2
known

h2
all

of the total additive

heritability explained by a set of known loci (inasmuch as the formula above involves multiplying

the numerator and denominator by the same constant).

Importantly, the formula above does not hold in general when the liability function is not additive

and normal. When considering traits that may involve additive interactions, it thus makes sense to

calculate πexplained =
h2
known

h2
all

on the disease scale.
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9 Applying the theorem in practice

To apply the theorem in practice, we would proceed as follows:

i. For each pair of individuals in a sample of size n, calculate the pairwise phenotypic product

matrix ρ(i, j) (defined as the product Z1×Z2 of the (normalized) phenotypes) and the pairwise

IBD-sharing matrix B(i, j) (defined as the proportion of the genotype inferred to be in “large”

segments, based on dense genotype information and an appropriate definition of “large”).

ii. For a window size ε, regress the values of ρ(i, j) on B(i, j) for those pairs (i, j) of individuals

with IBD sharing in the interval [κ0 − ε, κ0 + ε]. (Ideally, one should use a weighted gener-

alized least-square regression so that (i) equal weight is attached to each value of κ, and (ii)

correlations in the ρ(i, j) values for different pairs are taken into account.)

iii. Determine the slope β and set h2
all = (1 − κ0)β. While Theorem 1 applies to the limit as

ε → 0, two considerations must be balanced in practice: On the one hand, if ε is too small,

there will be too few pairs to obtain a good estimate. On the other hand, if ε is too large, the

value may not agree with the limit as ε→ 0. In fact, the error in the slope is O(ε2) and thus

is not overly sensitive to ε. In practice, one would examine multiple values of ε.

9.1 Heuristic formula for variance of slope

We give a heuristic formula for the variance of our estimate of the slope β, as a function of the

number of individuals n. We first recall standard facts on slope estimation in linear regression.

Consider the linear model

Y = β0 + β1X + ξ (9.1)

where ξ ∼ N(0, σ2
ξ ) is a noise variable, and the error variables ξ are independent Gaussian random

variables. Under this model, one can obtain an estimator β̂ for the slope β1 using standard least

squares. The distribution of the estimator β̂ when observing m independent observations (xi, yi)

can be explicitly written as,

β̂ ∼ N
(
β1,

σ2
ξ∑m

i=1(xi − x̄)2

)
(9.2)

When m is large, the variance is approximately

V ar[β̂] =
σ2
ξ

mσ2
x

(9.3)

We can apply the approximate formula in eq. (9.3) to our situation of regressing ρ(i, j) on

B(i, j). First, we estimate the variance of Z1Z2 for individuals with a given IBD sharing level near

κ0 to be similar to the variance of Z1Z2 for individuals whose expected IBD sharing level is κ0,

which is equal to 1 (since Z1 and Z2 are independent in this case). Second, we define α(ε) to be the

proportion of pairs with IBD sharing in the interval [κ0 − ε, κ0 + ε]. Since we have n individuals,
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the number of pairs of individuals with IBD in the interval is M(ε) = α(ε)
(
n
2

)
. Third, we define

σIBD(ε) to be the standard deviation of IBD sharing for pairs of individuals with IBD sharing in

the interval [κ0 − ε, κ0 + ε]. With these definitions, the variance of β̂ should be approximately

V ar[β̂] =
1

α(ε)
(
n
2

)
σIBD(ε)2

(9.4)

And

σ[β̂] ∼
√

2√
α(ε)nσIBD(ε)

(9.5)

Since our estimate for h2
all is (1− κ0)β̂, the variance of our estimate is (1− κ0)σ[β̂].

9.2 Simulation

We applied the theorem to simulated data to examine its performance. We did not attempt to

create a fully realistic model of IBD relationships in an isolated population, but instead used a

simple model as follows:

We assume a current population of n individuals originated from a founding population of nF

different founders, who themselves did not share any large IBD blocks. We thus mark each of the

founding genomes with a distinct “color”. We designate nc causal variant sites in the genome and

designate certain colors at each site to indicate the presence of a risk allele (with the choice made

so as to achieve a specified risk-allele frequency.) We generate modern genomes as a mosaic of the

founding genomes, with an average of nb recombination events. We generate a phenotype for each

individual based on the genotype at the causal variants and on the phenotype function Ψ. We

calculate the IBD relationships between individuals based on their genotypes, where IBD blocks are

regions with the same color.

We generated data for a quantitative trait following the P ∗ model (= LP (4, 50%)), with 1000

causal variants with risk-allele frequency f = 50%. We assumed a founding a population of 28

individuals and a recombination density of 23 events. These values were chosen such that the mean

and standard deviation of the resulting IBD distribution (3.6% and 4.0%) are roughly similar to that

observed in the Qatari population (3.6% and 4.0%) (data kindly provided by Haley Hunter-Zinck

and Andrew Clark33). The true heritability for the P ∗ model is h2
all = 25.4%. When we performed

100 simulations with samples of 1000 individuals, the estimated values in various windows around

the mean were very close to the true values (for example, 0.258 ± 0.082 for ε = 0.036). Estimates

were similar for values of ε that cover more than ∼ 20% of the pairs.

We also performed simulations for other population parameters, which were consistent with the

result in Theorem 1.

Detailed simulations to study the performance characteristics of the estimate would best be

performed using actual genotype data from real populations.
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10 Estimator based on slope of variation in IBD sharing among

sibs

Visscher et al.34 proposed estimating heritability by regressing phenotypic correlation between sibs

on their level of IBD sharing. The notion is premised on the fact that the level of IBD sharing varies

around the mean of 50%, with a standard deviation of ∼ 4%. The estimator has the attraction

that it compares pairs of individuals of the same familial relationships (that is, sibs) and thus,

unlike estimates based on comparisons among different types of relatives, is not confounded by

differences in shared-environment components among relative types. We will refer to this estimator

as h2
slope(sib).

The problem with the estimator h2
slope(sib) is that it is not consistent. One can see this in two

ways:

i. Mathematically, one can see by examining the proof of Theorem 1 that the value of ρ′(κ) for

κ > κ0 has additional positive terms (arising from interactions) and thus over-estimates h2
all.

ii. Empirically, one can simply calculate the value of h2
slope(sib) for a specific model and show

that h2
slope(sib) > h2

all. For P ∗ (the LP (4) model discussed above), we can calculate that

h2
pop(ADE) = 79.2%, h2

pop(PO) = 70.9%, h2
pop(ACE) = 54.0%, h2

slope(sib) = 30.5% and h2
all =

25.4%. The phantom heritability associated with h2
slope(sib) is thus lower than the phantom

heritability associated with the traditional estimators, it is still 16.7% = (30.5− 25.4/25.4).
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11 Arguments advanced in support of additivity

Various authors (such as Hill et al.9) have proposed arguments in support of the notion that genetic

interactions play little role in complex traits. We briefly discuss these arguments, pointing out the

flaws.

11.1 Allele frequencies

Hill et al.9 assert that genetic theory implies that complex traits will have largely additive variance.

Specifically, they state that (a) most variants in a large population will have extremely low minor

allele frequency and (b) traits caused by low-frequency alleles will not have substantial variance due

to interactions.

Their claim is wrong, because the LP models (a) can have substantial variance due to interactions

(indeed, the majority) and yet (b) can involve any class of allele frequencies. (Specifically, LP

models are defined as the minimum value of a set of traits, each of which is additive and normally

distributed. There is no constraint on the allele frequencies of the variants that sum to yield these

additive and normally distributed traits.)

What then is the flaw in Hill et al.’s argument?

i. Hill et al.9 consider only two-locus models - rather than multi-locus models. (They examine

a 10-locus model, but 8 of the loci are monomorphic, so the model is equivalent to a two-locus

model.) Multi-locus models have much greater opportunity for genetic interactions, because

n loci have n(n− 1)/2 potential interactions. (Hill et al. actually discuss a single multi-locus

model: their “duplicate factor” model. Notably, this model shows huge (100%) interaction

variance, but they argue that “such extreme models” are not compatible with observed data.)

ii. The main problem with the argument, however, is more fundamental. We discuss it for their

two-locus models (although the reasoning applies to multi-locus models as well). Hill et al.9

carry out detailed calculations for various two-locus models, calculating the expected values

of the interaction variance VAA, under the ”U”-shaped allele-frequency distribution expected

in large populations. Their argument boils down to the following:

• Consider two loci with alleles A, a and B, b, where the first allele is the major allele.

• As the population grows, the allele frequencies of a and b tend to zero. (That is, the loci

tend toward monomorphism.)

• As the allele frequencies of a and b tend to zero, three (of the nine possible) genotypes

dominate the population (AABB,AABb,AaBB).

• As these three genotypes dominate the population, the ratio of the interaction variance

to the total genetic variance VAA/VG tends to zero (since there can be no interaction

terms with only three states and two variables).
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The problem with this reasoning is: As the population grows (and the typical locus tends

toward monomorphism), typical traits involving typical loci become very boring! They not

only have low interaction variance VAA, they also have very low total genetic variance VG.

That is, the typical trait doesn’t vary much in the population! In effect, Hill et al.’s theory thus

actually describes what happens for rare traits caused by a few rare variants. Not surprisingly,

interactions account for a small proportion of the variance for such traits.

Hill et al.’s model, however, is not pertinent to common traits. The interesting complex traits

are those that have significant genetic variance in the population: these traits necessarily

have higher allele frequencies (assuming they depend only on a few, e.g. two loci) and thus,

under Hill et al.’s analysis, can involve larger interaction variance and a higher ratio VAA/VG.

(We illustrate this point in Supp. Fig. 9, where we analyze the first two-locus model in Hill

et al.9 In the example, we have VAA/VG > 50%, 20% and 10% for minor allele frequencies

> 27%, 14% and 8%, respectively. The cases with very low interaction variance have much

lower-than-average genetic variance.)

11.2 Breeder’s equation

Breeders have long successfully employed the so-called “breeder’s equation”, which states that the

response to selection scales linearly with the strength of selection, over generations. Some authors

appear to believe that a roughly linear response to selection implies that the trait itself has an

additive architecture. However, this is false. The breeder’s equation1 is

∆µ = A∆s (11.1)

where ∆s denotes the average phenotypic shift of the parents selected for breeding (relative

to the population mean) and ∆µ denotes the average phenotypic shift of the resulting offspring.

The coefficient A is determined by the correlation between mid-parents and offspring phenotypes

- that is, by the slope of the regression line for these quantities. It is frequently referred to as the

”heritability”. More precisely, A is the top-down quantity h2
pop(PO), which does not necessarily

equal the narrow-sense heritability h2
all.

The equation can be mathematically proven to hold exactly in the case of a strictly additive

trait. However, importantly, it also holds approximately for a wide range of non-additive traits.

Specifically, the equation will hold whenever the mid-parent and offspring phenotypes are linearly

related across a wide range of values. (That is, they are distributed along a regression line - whose

slope is, by definition, h2
pop(PO).) If we select parents with an average phenotypic shift of ∆s, then

their offspring will have an average phenotypic shift of h2
pop(PO)∆s. This relationship will continue

to hold across generations of selection, provided that the points largely lie in the linear range of

parent-offspring correlation.

For typical LP traits, parent-offspring values fall along a regression line despite the fact that the

LP models involve interactions. The case of P ∗ = LP (4, 50%, 50%) model is illustrated in Supp.
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Fig. 10. The model itself is highly non-linear (h2
all = 25.4%, h2

pop(PO) = 70.8%), yet the relation

between the mid-parent value and the offspring value is very close to linear.

We performed a computer simulation on this trait (Supp. Fig. 11). For various selection cutoffs

T , we randomly selected genotypes for parents conditional on both having phenotype > T and

calculated the value of the phenotype for an offspring. We confirmed that (i) the response to

selection is indeed very nearly linear in the strength of selection and (ii) the slope is very close to

the apparent heritability h2
pop(PO) = 70.8%, but far from the true heritability h2

all = 25.4%.

11.3 Observed sibling correlations

As evidence that quantitative traits fit an additive model, some authors have cited the observation

that the observed median value of rMZ − 2rDZ across traits is centered around zero. For example,

Hill et al.9 note that the median value of (rMZ − 2rDZ) for 86 quantitative traits is close to zero.

They suggest that this observation provides support for an additive model.

We do not find this argument persuasive for two reasons. First, the observed value of (rMZ −
2rDZ) actually varies widely (from−0.50 to +0.30) - much more widely than appears to be consistent

with sampling error. Second, shared environment is known to be important for many traits. For a

strictly additive trait, shared environment will cause (rMZ − 2rDZ) to be negative. The fact that

(rMZ − 2rDZ) is observed to be centered around zero could thus be taken as a case for the presence

of genetic interactions, because genetic interactions would increase (rMZ − 2rDZ) and thus offset

the effects of shared environment. In short, the empirical data are not compelling.
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12 Supplementary code

We have implemented the calculations used in the paper in a Matlab software package. The package

provides functions for computing heritability for non-additive models (e.g. the LP models), functions

for computing detection power for different tests for epistasis, functions for simulating populations

with IBD structure and for computing our estimator h2
slope(κ0), and many additional utilities. The

package is available at www.broadinstitute.org/mpg/hc, with a readme file providing explanations

for the different functions. Please refer any questions to orzuk@broadinstitute.org.
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13 Supplementary figures
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Figure 1: (a.) The distribution of the maximum of k standard Gaussian random variables, for dif-

ferent values of k. For k = 1 (black), the distribution is the standard Gaussian distribution. (b.) The

(normalized) distribution of quantitative traits under the Limiting Pathway model LP (k, h2
pathway, 0)

for different values of k. These are the same distributions as in (a.), scaled to have mean zero and

variance one. For k ≤ 10, the deviations are small and would not be taken as meaningful evidence

of non-linearity. Even for somewhat larger k, human geneticists would tend to ignore the deviations

or apply a modest transformation.
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Figure 2: (a.) Phenotypic correlation of monozygotic twins (rMZ) and dizygotic twins (rDZ) for

quantitative traits under the same LP models as in Fig. 1a (main text). The curves connect points

with various values of k (1, 2, 3, 4, 5, 6, 7, 10 with the tip of the arrow corresponding to k = 10)

for particular values of h2
pathway (10, 30, 50, 70 and 90%, indicated by color of the curve). Red star

indicates the example referred to in the text. Black points show the values of (rMZ , rDZ) for 86

actual quantitative traits reported by Hill et al.9 (Supp. Table 6). Under a purely additive model

with no shared environment, the expectation is rDZ = rMZ/2. The values under the LP models,

including as a special case the additive model (k = 1), are largely similar to the values seen for the

actual traits. (For raw data, see Supp. Table 7.) (b.) Relative risk to monozygotic twins ( λMZ)

and siblings (λs) for the same LP models as in Fig. 1b (main text). The curves connect points

with various values of k (1, 2, 3, 4, 5, 6, 7, 10 with the tip of the arrow corresponding to k = 10) for

particular values of h2
pathway (10, 30, 50, 70 and 90%, indicated by color of the curve) and prevalence

(solid 0.1%, dotted 1%, dashed 10%). Red star indicates the example referred to in the text. Black

points show the values of ( λMZ , λs) for 15 actual diseases, reported by Wray et al.10 (Supp.

Table 2). The values of ( λMZ , λs) observed under the LP models show largely similar relationships

to those observed for the actual traits. (Interestingly, the median value of λs observed for real

diseases is ∼ 11% smaller than the value expected under a strictly additive model, although the

variance is large ∼ 32.3%.) Inset shows a zoomed-in view for λMZ < 5. (For raw data, see Supp.

Table 2.)
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Figure 3: (a.) Deviation between the values of rDZ observed under the Limiting Pathway model,

and the values expected under the (incorrect) assumption that the trait follows an A∆ model, for

various parameters. The curves connect points with various values of k (1, 2, 3, 4, 5, 6, 7, 10, with

the tip of the arrow corresponding to k = 10) for particular values of h2
pathway (10, 30, 50, 70 and

90%, indicated by color of the curve) and cR (0% filled circles and arrows, 50% open boxes and

arrows). Red star indicates the example referred to in the main text. The deviations are largely

similar to the values seen for actual traits.

(b.) The apparent heritability h2
pop (y-axis) plotted against the heritability h2

all (x-axis), under the

same Limiting Pathway models as in (a). For k = 1, the points lie on the diagonal dashed black line

h2
all = h2

pop , indicating that the phantom heritability is zero. As k increases, the true heritability

h2
all drops rapidly, but the top-down estimate h2

pop either decreases at a slower rate (for cR = 0%),

or even increases (cR = 50%). In both cases the gap between the two quantities increases, resulting

in an increase in phantom heritability.
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Figure 4: (a.) Deviation between the value of λs observed under the Limiting Pathway model and

the value expected under the (incorrect) assumption that the trait follows an A∆ model, for various

parameters. The curves connect points with various values of k (1, 2, 3, 4, 5, 6, 7, 10 with the tip

of the arrow corresponding to k = 10) for particular values of h2
pathway (10, 30, 50, 70 and 90%,

indicated by color of the curve) and prevalence (solid 0.1%, dotted 1%, dashed 10%). We assume

no shared environmental variance (cR = 0). Red star indicates the example referred to in the main

text. The deviations are largely similar to the values seen for actual traits, except for traits where

the observed λs is much bigger than the expected λs.

(b.) The apparent heritability h2
pop (y-axis) plotted against the true heritability h2

all (x-axis) under

the same Limiting Pathway models as in (a). For k = 1, the points lie on the diagonal dashed

black line h2
all = h2

pop, indicating that the phantom heritability is zero. As k increases, the true

heritability h2
all drops rapidly, but the top-down estimate either decreases at a slower rate or even

increases, depending on h2
pathway and µ. The gap between the two quantities increases, resulting in

an increase in phantom heritability.
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Figure 5: (a.) Relative risk to monozygotic twins (λMZ) and siblings (λs) for disease traits under

the Limiting Pathway model LP∆ (k, h2
pathway, cR, µ) for various parameters. The curves connect

points with various values of k (1, 2, 3, 4, 5,6,7,10 with the tip of the arrow corresponding to k = 10)

for particular values of h2
pathway (10, 30, 50, 70 and 90%, indicated by color of the curve), prevalence

(solid 0.1%, dotted 1%, dashed 10%), and shared environment (0% filled circles and arrows, 50%

open boxes and arrows). Red star indicates the example referred to in the main text. Black points

show the values of (λMZ , λs) for 15 actual diseases, reported by Wray et al.10 Supp. Fig. 2b

includes only the case of no shared environment (cR = 0). The inclusion of shared environment

further increases λs relative to λMZ (and to the expected λs) and provides a better fit for some of the

observed epidemiological parameters. (b.) Phantom heritability πphantom (y-axis) plotted against

the monozygotic twin relative risk λMZ (x-axis) under the same Limiting Pathway models as in

(a). The phantom heritability increases with k. Shared environment increases the monozygotic risk

λMZ substantially, and also slightly increases the phantom heritability.
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Figure 6: (a.) Heritability for the generalized LP model Ψ = log[
∑

i e
αΨ(i)

] for different values

of α. Shown are the top-down heritability h2
pop (blue), bottom-up heritability h2

all (red), and the

resulting phantom heritability πphantom (green) for α in the range [0, 10], for a model with k = 3

pathways and h2
pathway = 80% heritability in each pathway. For each value of α, the heritabilities

were computed by simulating 106 families and computing the familial correlation (for h2
pop) and

the correlation between genotypes and phenotypes (for h2
all). For α → 0 the model is additive,

with h2
all = h2

pop = 80% and πphantom = 0%. As α increases, the model becomes more and more

non-linear and the phantom heritability increases. At α = 10, the model is already very close to

the LP model LP (k = 3, h2
pathway = 80%) (denoted in stars).
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Figure 7: (a.) Curves show log of relative risk (λR) for schizophrenia to relatives of an affected

individual, as a function of twice the kinship coefficient (κR) (for MZ twins, DZ twins, grand-

children and cousins). Blue stars show data from Risch et al.16 Red curve shows the fit to an

additive A∆ model. Green curve shows the fit to the LP (2) model. Both models provide similar fit

to the empirical data. (b.) Curves are as in (a), except that the y-axis is correlation (rR) among

family members, as a function of twice the kinship coefficient (for MZ twins, DZ twins, grand-

children and cousins). To obtain the data, the relative risk (λR) was transformed to correlation the

liability scale (rR), by fitting a A∆ model with prevalence µ = 0.85% (see Supp. Table 5). Under

the additive model, the correlations are proportional to the kinship - that is fall on a straight line

(shown in red). The deviations from the red line for both the empirical data and the LP (2) model

are small. While both the additive and non-additive models fit the data, the phantom heritability

according the additive model is 0% and under the LP∆(2) model is large (46%).

58



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
3

10
4

10
5

10
6

10
7

h
i
2 (%)

n

                                                                                                    

 

 

10%
50%
90%

Figure 8: Curves show sample size required to detect individual loci (solid curves), pairwise

interactions between two loci (dotted curves) and meta-interactions (dashed curves), at indicated

power levels (10% (blue), 50% (green) and 90% (red)) for a disease with prevalence corresponding

to the model LP∆ (k = 3, h2
pathway = 50%, cR, µ = 0.01%). For the calculations here, each locus

gi is assumed to have minor allele frequency fi = 0.2. For detecting individual loci, the x-axis

refers to the fraction φi of the apparent heritability that a geneticist would attribute to a locus

given the effect size ηi observed in a GWAS and the (incorrect) assumption that the trait follows an

A∆ model. (Specifically, the variance attributed to the locus is h2
i = β2

i fi(1−fi), and the fraction of

the apparent heritability explained is φi = h2
i /h

2
pop). For detecting pairwise interactions, the x-axis

refers to the fraction φi of the apparent heritability that would be attributed to each of the two loci

being tested for interaction. For detecting meta-interactions between pathways, the x-axis refers to

the fraction h2
i of the apparent heritability that would be attributed to a set of loci in each of two

pathways (See Section 7 for a description of power calculations). Red star indicates the example

referred to in the text. Compared to the sample size required to detect the individual loci, the

sample size required to detect the pairwise interactions among the loci is roughly 8-fold larger. This

is due to both the greater statistical power obtained by combining the signal from multiple loci, as

well as to the lower burden of multiple hypothesis testing.
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Figure 9: The graph shows the different variance components for a two-locus model from Hill et

al.9 The model specifies the value of a quantitative trait as a function of genotype according to the

following table (for some constant c > 0):

AA Aa aa

BB 2c c 0

Bb c c c

bb 0 c 2c

(13.1)

The variance components for this model are plotted as a function of the allele frequencies, where we

assume both variants have the same minor allele frequency, Pr(a) = Pr(b) = p. The curves show

the total genetic variance VG (red), the fraction of additive variance VA/VG (green) and the fraction

of interaction variance VAA/VG (blue). As the allele frequency p approaches zero, the fraction of

interaction variance, VAA/VG, approaches zero, but the total genetic variance VG also approaches

zero and the trait becomes a rare trait.
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Figure 10: The graph shows the relation between the response to selection, ∆µ
∆s , and the apparent

heritability h2
pop(PO). We studied the P ∗ = LP (4, 50%, 50%) model, for which the true narrow

sense heritability is h2
all = 25.4% and the population estimate h2

pop(PO) = 70.8%. For 50,000

simulated trios we plotted the mid-parent phenotype (x-axis) vs. offspring phenotype (y-axis).

Blue points represent unselected trios. Red points represent selected trios. Parents were required to

have phenotype ≥ 1 to reproduce (dashed vertical black line denotes mid-parent value = 1). Not all

points with mid-parent value ≥ 1 are selected (red), since selection requires both parent’s phenotype

to exceed the threshold (not merely their average). The magenta curve shows, for each value of the

mid-parent phenotype (x-axis), the mean value of the offspring phenotype (y-axis). The mean value

of the offspring phenotype is roughly linearly proportional to the the mid-parent phenotype, as can

be seen by comparing it to the linear regression line over all points (dashed red). The black star

denotes the average mid-parent phenotype in the selected parents (∆s) vs. the expected offspring

phenotype for these parents (∆µ). It is obtained by averaging over all values of parent phenotypes

above the threshold 1. Since the black star lies roughly on the line connecting mid-parent phenotype

and expected offspring phenotype, the value ∆s
∆µ (the response to selection) is roughly equal to the

slope of this line (h2
pop(PO)). Both values exceed h2

all, as can be seen by plotting the line y = h2
allx

(shown in dashed green), which has a lower slope.
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Figure 11: The graph shows how the average phenotypic deviation in a set of selected parents

(x-axis) corresponds to the average phenotypic deviation in the resulting offspring. We studied

the LP (4, 50%, 50%) model, for which the true narrow sense heritability is h2
all = 25.4% and the

apparent heritability based on parent-offspring calculation h2
pop(PO) = 70.8%. Selection was per-

formed by taking the parents to be individuals with phenotype Z > τ , for a given threshold τ , and

then simulating 50,000 parent-offspring trios. For various thresholds τ , we calculated: the value of

∆s, the average value of ∆µ across the offspring and the average ratio ∆µ
∆s (by regressing ∆µ on

∆s.) We repeated the simulation 100 times, to find average regression coefficient as an estimator

for heritability. The mean slope of the regression line is ∼ 0.071, which is very close to h2
pop(PO).

Thus, the breeder’s equation ∆µ
∆s = h2

pop(PO) still holds to a good approximation, even though the

trait is highly non-additive.
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14 Supplementary tables

Table 6: The table shows reported values of rMZ and rDZ for different traits. Under an additive

model with no shared environment we expect rMZ−2rDZ = 0. While observed values of rMZ−2rDZ

have a median around zero, they display wide deviations.

Trait rMZ(%) rDZ(%) rMZ − 2rDZ(%)

Age at first reproduction 39 28 -17

Age at menarche 51 17 17

Age at menopause 52 29 -6

Airway histamine responsivness 63 32 -1

Alanine aminotransferase 49 19 10

Alcohol consumption 68 34 1

Alcohol dependence 61 34 -6

ApoE 61 28 5

Aspartate aminotransferase 32 16 0

Birth weight 75 74 -73

Blood: CD4/CD8 ratio 85 50 -15

Blood: Lymphocytes 72 42 -12

Blood: Mean corpuscular volume 97 47 3

Blood: Platelets 82 46 -11

Blood: White blood cells 71 42 -14

BMI, age 20-29 70 26 18

BMI, age 30-39 73 39 -4

Cannabis dependence 64 44 -25

Carabelli trait in teeth (right side) 89 41 6

Chronic pelvic pain 43 11 21

Cloninger: Harm avoidance 44 11 21

Cloninger: Novelty seeking 41 11 18

Cloninger: Persistence 35 11 13

Cloninger: Reward dependence 38 8 22

Coffee consumption 52 20 12

DSVIV Major depressive disorder 31 12 6

Depth of sleep 33 1 31

Diastolic blood pressure 53 33 -13

Disordered eating in women (Wave 2) 29 10 9

Endometriosis 46 28 -10

Eosinophils 59 17 25

Exercise participation 46 21 5

Fainting because of blood 43 30 -16

Fainting non-blood 46 54 -63

Fatigue 43 16 11

Fear of blood 71 20 31

Female orgasm 31 16 -1

Finger ridge count 95 40 15

Fitness 42 19 4

Forced expiratory volume 90 64 -38

Haemoglobin age 12 84 54 -24

Hay fever 61 25 10

Height (clinically measured) 92 42 7

IQ 84 47 -10

Immunoglobulin E 67 18 31
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Table 6: Epidemiological parameters for a list of quantitative traits. (Source: Hill et al.9) (cont.)

Trait rMZ(%) rDZ(%) rMZ − 2rDZ(%)

Incisor dimension: Lower-right-2 84 42 0

Incisor dimension: Upper-left-1 88 43 2

Individual Alpha frequency (EEG) 86 35 16

Inspection Time 41 19 3

Insulin concentration 32 20 -8

Liability to appendectomy 48 35 -23

Liability to asthma 64 23 18

Liability to tonsillectomy: Cohort 1 86 58 -29

Male baldness 81 39 3

Melanocytic naevi size (area) 65 39 -12

Mouth ulcers 57 29 -1

Neuroticism 37 17 3

Neuroticism 40 14 12

Nevus (mole) count 94 63 -32

Osteoarthritis in women 41 22 -3

Parietal P300 latency 47 22 3

Parietal slow wave amplitude 46 33 -20

Performance IQ 72 34 5

Prefrontal P300 latency 46 19 8

Prefrontal slow wave amplitude 40 15 10

Premature parturition for any birth 30 3 24

Prementrual Symptoms (factor score) 45 16 13

Psychosis proneness Scale 1 34 14 6

Psychosis proneness Scale 2 28 15 -2

Psychosis proneness Scale 3 51 9 33

Psychosis proneness Scale 4 39 10 19

Quality of sleep 31 18 -4

Red blood cell folate 46 20 6

Red cell count age 12 88 57 -25

Serum dehydroepiandrosterone sulfate 59 30 0

Serum gamma-glutamyltransferase 52 22 9

Smoking initiation (younger cohort) 84 48 -13

Stuttering 43 12 19

Susceptibility to Migraine 35 15 5

Systolic blood pressure 57 23 11

Tea consumption 50 29 -9

Teenage acne severity, age 14 80 26 28

Total cholesterol 61 34 -7

Triglycerides 54 34 -14

Verbal IQ 81 49 -18

Voting behavior 81 69 -57
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Table 7:

For each choice of the model parameters (k, h2
pathway and cR) we calculated relevant genetic and

population parameters.

• Vc is the fraction of total phenotypic variance for the trait attributable to shared environment.

(Recall that cR is the fraction of the environmental variance for each pathway attributable to

shared environment.)

• rMZ and rDZ are the monozygotic and dizygotic twin correlations in phenotype, respectively.

• h2
all is the true narrow sense heritability (fraction of phenotypic variance explained by an

additive model including all genetic variants).

• h2
pop(ACE), h2

pop(ADE) and h2
pop(PO) are the apparent heritabilities calculated using the three

population estimators (See Section 1).

• πphan(ACE), πphan(ADE) and πphan(PO) are the missing heritabilities associated with each

of the apparent heritabilities. (See Section 1).
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Table 7: Model parameters for the LP model LP (k, h2
pathway, cR) for quantitative traits.

k h2
path(%) cR(%) rMZ(%) rDZ(%) h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

1 10 0 10.0 5.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0

1 30 0 30.0 15.0 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0

1 50 0 50.0 25.0 50.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0

1 70 0 70.0 35.0 70.0 0.0 70.0 0.0 70.0 0.0 70.0 0.0

1 90 0 90.0 45.0 90.0 0.0 90.0 0.0 90.0 0.0 90.0 0.0

1 10 25 32.5 27.5 10.0 22.5 10.0 0.0 77.5 87.1 55.0 81.8

1 30 25 47.5 32.5 30.0 17.5 30.0 0.0 82.5 63.6 65.0 53.8

1 50 25 62.5 37.5 50.0 12.5 50.0 0.0 87.5 42.9 75.0 33.3

1 70 25 77.5 42.5 70.0 7.5 70.0 0.0 92.5 24.3 85.0 17.6

1 90 25 92.5 47.5 90.0 2.5 90.0 0.0 97.5 7.7 95.0 5.3

1 10 50 55.0 50.0 10.0 45.0 10.0 0.0 100.0 93.1 100.0 90.0

1 30 50 65.0 50.0 30.0 35.0 30.0 0.0 100.0 77.8 100.0 70.0

1 50 50 75.0 50.0 50.0 25.0 50.0 0.0 100.0 60.0 100.0 50.0

1 70 50 85.0 50.0 70.0 15.0 70.0 0.0 100.0 39.1 100.0 30.0

1 90 50 95.0 50.0 90.0 5.0 90.0 0.0 100.0 14.3 100.0 10.0

1 10 75 77.5 72.5 10.0 67.5 10.0 0.0 100.0 95.3 100.0 93.1

1 30 75 82.5 67.5 30.0 52.5 30.0 0.0 100.0 84.0 100.0 77.8

1 50 75 87.5 62.5 50.0 37.5 50.0 0.0 100.0 69.2 100.0 60.0

1 70 75 92.5 57.5 70.0 22.5 70.0 0.0 100.0 49.1 100.0 39.1

1 90 75 97.5 52.5 90.0 7.5 90.0 0.0 100.0 20.0 100.0 14.3

2 10 0 7.6 3.7 7.3 0.0 7.7 4.5 7.3 0.0 7.4 1.5

2 30 0 24.1 11.5 22.0 0.0 25.2 12.6 22.0 0.0 23.0 4.5

2 50 0 42.6 19.8 36.7 0.0 45.7 19.7 36.6 0.0 39.6 7.4

2 70 0 63.3 28.6 51.3 0.0 69.5 26.2 50.9 0.0 57.1 10.1

2 90 0 86.7 37.8 66.0 0.0 97.8 32.5 64.5 0.0 75.6 12.7

2 10 25 26.3 21.9 7.3 18.8 8.8 16.2 61.4 88.1 43.9 83.3

2 30 25 40.2 26.3 22.0 16.1 27.8 20.8 65.1 66.2 52.6 58.2

2 50 25 55.3 30.8 36.7 12.7 48.9 25.1 68.0 46.1 61.6 40.5

2 70 25 71.7 35.4 51.3 8.4 72.6 29.2 70.1 26.7 70.9 27.6

2 90 25 89.9 40.2 66.0 3.2 99.4 33.6 70.9 6.9 80.4 17.9

2 10 50 47.6 42.6 7.3 40.0 9.9 26.0 100.0 94.0 85.3 91.4

2 30 50 57.9 42.6 22.0 33.8 30.6 28.1 100.0 80.5 85.3 74.2

2 50 50 68.9 42.6 36.7 26.3 52.5 30.2 100.0 63.9 85.3 57.0

2 70 50 80.6 42.6 51.3 17.2 75.9 32.3 90.0 42.9 85.3 39.8

2 90 50 93.1 42.6 66.0 6.4 100.0 34.7 77.4 14.7 85.3 22.6

2 10 75 71.7 66.1 7.3 64.2 11.3 35.1 100.0 96.2 100.0 94.5

2 30 75 77.6 60.6 22.0 53.5 33.9 35.1 100.0 86.7 100.0 81.8

2 50 75 83.6 55.3 36.7 41.0 56.6 35.2 100.0 73.3 100.0 66.8

2 70 75 89.9 50.1 51.3 26.6 79.5 35.5 100.0 53.6 100.0 48.8

2 90 75 96.5 45.1 66.0 9.8 100.0 35.8 83.9 21.3 90.2 26.8

3 10 0 6.3 3.0 6.0 0.0 6.4 7.5 5.9 0.0 6.1 2.3

3 30 0 20.8 9.7 17.9 0.0 22.4 20.1 17.8 0.0 19.3 7.4

3 50 0 38.4 16.9 29.8 0.0 42.8 30.4 29.4 0.0 33.9 12.1

3 70 0 59.3 24.9 41.7 0.0 68.7 39.2 40.5 0.0 49.9 16.4

3 90 0 84.6 33.7 53.6 0.0 100.0 47.3 50.1 0.0 67.4 20.4

3 10 25 22.9 18.9 6.0 16.6 8.0 25.5 52.6 88.7 37.7 84.2

3 30 25 36.0 22.9 17.9 15.1 26.2 31.9 55.5 67.8 45.7 60.9

3 50 25 51.0 27.0 29.8 12.6 47.9 37.8 57.2 47.9 54.1 44.9

3 70 25 68.1 31.4 41.7 8.9 73.5 43.2 57.5 27.5 62.8 33.6

3 90 25 88.2 36.0 53.6 3.6 100.0 48.6 55.8 3.9 72.0 25.5

3 10 50 43.2 38.4 6.0 37.0 9.8 39.0 100.0 94.6 76.7 92.2

3 30 50 53.7 38.4 17.9 32.8 30.6 41.7 99.7 82.1 76.7 76.7

3 50 50 65.1 38.4 29.8 26.8 53.5 44.3 88.3 66.3 76.7 61.2

3 70 50 77.7 38.4 41.7 18.5 78.8 47.0 75.7 44.9 76.7 45.6

3 90 50 91.9 38.4 53.6 7.3 100.0 49.9 61.5 12.8 76.7 30.1

3 10 75 68.1 62.2 6.0 61.9 12.0 50.3 100.0 96.7 100.0 95.2

3 30 75 74.5 56.4 17.9 53.6 36.0 50.4 100.0 88.2 100.0 84.2

3 50 75 81.1 51.0 29.8 42.8 60.3 50.6 100.0 75.7 100.0 70.8

3 70 75 88.2 45.8 41.7 28.9 84.8 50.8 94.8 56.0 91.5 54.4

3 90 75 95.8 40.8 53.6 11.2 100.0 51.3 67.3 20.3 81.5 34.2
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Table 7: Model parameters for the LP model LP (k, h2
pathway, cR) for quantitative traits. (cont.)

k h2
path(%) cR(%) rMZ(%) rDZ(%) h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

4 10 0 5.4 2.6 5.1 0.0 5.6 9.7 5.0 0.0 5.2 2.5

4 30 0 18.7 8.4 15.3 0.0 20.4 25.4 15.1 0.0 16.9 9.5

4 50 0 35.4 15.0 25.4 0.0 40.7 37.5 24.8 0.0 30.1 15.5

4 70 0 56.4 22.5 35.6 0.0 67.7 47.5 33.6 0.0 45.0 20.9

4 90 0 83.0 30.8 45.8 0.0 100.0 56.1 40.4 0.0 61.7 25.8

4 10 25 20.5 16.8 5.1 15.1 7.4 31.7 46.7 89.1 33.6 84.9

4 30 25 33.1 20.5 15.3 14.4 25.1 39.2 49.1 68.9 41.1 62.9

4 50 25 47.9 24.5 25.4 12.5 46.9 45.8 50.0 49.2 49.0 48.1

4 70 25 65.5 28.7 35.6 9.2 73.8 51.8 49.1 27.5 57.3 37.9

4 90 25 86.9 33.1 45.8 3.9 100.0 57.5 45.4 0.0 66.2 30.8

4 10 50 40.2 35.4 5.1 34.8 9.6 47.1 100.0 95.0 70.8 92.8

4 30 50 50.7 35.4 15.3 32.0 30.5 50.1 90.9 83.2 70.8 78.5

4 50 50 62.4 35.4 25.4 27.0 54.0 52.9 79.2 67.9 70.8 64.1

4 70 50 75.7 35.4 35.6 19.3 80.5 55.8 65.9 46.0 70.8 49.7

4 90 50 91.0 35.4 45.8 8.0 100.0 58.8 50.6 9.6 70.8 35.4

4 10 75 65.5 59.3 5.1 60.1 12.4 59.1 100.0 97.0 100.0 95.7

4 30 75 72.2 53.5 15.3 53.5 37.4 59.2 100.0 89.2 100.0 85.7

4 50 75 79.3 47.9 25.4 43.9 62.7 59.4 100.0 77.4 95.9 73.5

4 70 75 86.9 42.7 35.6 30.5 88.4 59.7 83.9 57.6 85.4 58.3

4 90 75 95.3 37.8 45.8 12.3 100.0 60.2 55.8 17.9 75.5 39.4

5 10 0 4.8 2.3 4.5 0.0 5.0 11.5 4.3 0.0 4.6 2.3

5 30 0 17.0 7.5 13.4 0.0 19.0 29.4 13.1 0.0 15.1 11.1

5 50 0 33.2 13.6 22.3 0.0 39.0 42.7 21.4 0.0 27.3 18.1

5 70 0 54.1 20.7 31.3 0.0 66.9 53.2 28.6 0.0 41.3 24.3

5 90 0 81.7 28.7 40.2 0.0 100.0 62.1 33.1 0.0 57.4 30.0

5 10 25 18.8 15.3 4.5 14.0 7.0 36.4 42.4 89.5 30.6 85.4

5 30 25 30.9 18.8 13.4 13.9 24.2 44.5 44.4 69.8 37.6 64.4

5 50 25 45.6 22.6 22.3 12.4 46.0 51.5 44.7 50.1 45.2 50.5

5 70 25 63.5 26.6 31.3 9.4 73.8 57.6 42.9 27.1 53.2 41.2

5 90 25 85.9 30.9 40.2 4.1 100.0 63.4 37.7 0.0 61.8 34.9

5 10 50 37.9 33.2 4.5 33.1 9.5 52.8 94.7 95.3 66.3 93.3

5 30 50 48.3 33.2 13.4 31.3 30.4 55.9 84.3 84.1 66.3 79.8

5 50 50 60.3 33.2 22.3 27.1 54.2 58.8 72.4 69.1 66.3 66.3

5 70 50 74.0 33.2 31.3 19.9 81.7 61.7 58.6 46.6 66.3 52.8

5 90 50 90.2 33.2 40.2 8.5 100.0 64.8 42.4 5.2 66.3 39.3

5 10 75 63.5 57.1 4.5 58.7 12.8 65.0 100.0 97.3 100.0 96.1

5 30 75 70.4 51.2 13.4 53.3 38.4 65.1 100.0 90.0 100.0 86.9

5 50 75 77.8 45.6 22.3 44.6 64.4 65.3 100.0 78.6 91.2 75.5

5 70 75 85.9 40.4 31.3 31.8 91.0 65.6 75.6 58.6 80.8 61.3

5 90 75 94.8 35.5 40.2 13.1 100.0 66.1 47.1 14.6 71.0 43.3

6 10 0 4.3 2.0 4.0 0.0 4.6 12.9 3.8 0.0 4.1 1.7

6 30 0 15.8 6.9 12.0 0.0 17.8 32.6 11.6 0.0 13.7 12.3

6 50 0 31.4 12.6 20.0 0.0 37.6 46.8 18.9 0.0 25.1 20.2

6 70 0 52.3 19.2 28.0 0.0 66.0 57.5 24.7 0.0 38.5 27.1

6 90 0 80.7 27.0 36.1 0.0 100.0 66.4 27.5 0.0 54.1 33.3

6 10 25 17.5 14.1 4.0 13.1 6.7 40.1 39.1 89.7 28.3 85.8

6 30 25 29.2 17.5 12.0 13.4 23.4 48.6 40.8 70.5 35.0 65.6

6 50 25 43.7 21.1 20.0 12.3 45.3 55.7 40.6 50.7 42.2 52.5

6 70 25 61.9 25.0 28.0 9.6 73.7 62.0 38.1 26.3 50.0 43.9

6 90 25 85.0 29.2 36.1 4.3 100.0 67.7 31.7 0.0 58.3 38.2

6 10 50 36.0 31.4 4.0 31.7 9.3 57.1 89.5 95.5 62.8 93.6

6 30 50 46.5 31.4 12.0 30.7 30.2 60.2 79.0 84.8 62.8 80.8

6 50 50 58.5 31.4 20.0 27.2 54.3 63.1 67.0 70.1 62.8 68.1

6 70 50 72.6 31.4 28.0 20.4 82.5 66.0 52.9 46.9 62.8 55.3

6 90 50 89.6 31.4 36.1 8.9 100.0 69.0 35.9 0.0 62.8 42.5

6 10 75 61.9 55.3 4.0 57.5 13.0 69.2 100.0 97.5 100.0 96.4

6 30 75 68.9 49.3 12.0 53.1 39.2 69.3 100.0 90.6 98.6 87.8

6 50 75 76.6 43.7 20.0 45.2 65.7 69.5 98.3 79.6 87.4 77.1

6 70 75 85.0 38.5 28.0 32.7 93.0 69.8 69.1 59.4 77.0 63.6

6 90 75 94.5 33.7 36.1 13.8 100.0 70.3 40.2 10.3 67.3 46.4
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Table 7: Model parameters for the LP model LP (k, h2
pathway, cR) for quantitative traits. (cont.)

k h2
path(%) cR(%) rMZ(%) rDZ(%) h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

7 10 0 4.0 1.8 3.6 0.0 4.2 14.2 3.4 0.0 3.7 0.7

7 30 0 14.7 6.3 10.9 0.0 16.9 35.3 10.5 0.0 12.6 13.2

7 50 0 29.9 11.7 18.2 0.0 36.5 50.0 16.8 0.0 23.4 22.0

7 70 0 50.7 18.1 25.5 0.0 65.3 60.9 21.6 0.0 36.2 29.5

7 90 0 79.8 25.6 32.8 0.0 100.0 69.7 22.8 0.0 51.3 36.0

7 10 25 16.4 13.2 3.6 12.4 6.4 43.1 36.3 90.0 26.4 86.2

7 30 25 27.7 16.4 10.9 13.0 22.7 51.8 37.8 71.1 32.8 66.6

7 50 25 42.1 19.9 18.2 12.2 44.6 59.1 37.3 51.2 39.7 54.1

7 70 25 60.4 23.6 25.5 9.7 73.6 65.3 34.1 25.2 47.3 46.0

7 90 25 84.2 27.7 32.8 4.5 100.0 71.0 26.7 0.0 55.5 40.9

7 10 50 34.5 29.9 3.6 30.6 9.2 60.5 85.1 95.7 59.8 93.9

7 30 50 44.9 29.9 10.9 30.1 30.0 63.5 74.7 85.4 59.8 81.7

7 50 50 57.1 29.9 18.2 27.2 54.3 66.5 62.6 70.9 59.8 69.5

7 70 50 71.5 29.9 25.5 20.7 83.1 69.3 48.2 47.0 59.8 57.3

7 90 50 89.0 29.9 32.8 9.2 100.0 72.2 30.6 0.0 59.8 45.2

7 10 75 60.4 53.8 3.6 56.5 13.2 72.4 100.0 97.6 100.0 96.6

7 30 75 67.6 47.8 10.9 52.9 39.7 72.5 100.0 91.1 95.5 88.6

7 50 75 75.5 42.1 18.2 45.6 66.7 72.7 93.1 80.4 84.3 78.4

7 70 75 84.2 37.0 25.5 33.5 94.6 73.0 63.6 59.9 73.9 65.5

7 90 75 94.1 32.2 32.8 14.4 100.0 73.5 34.5 5.0 64.3 49.0

8 10 0 3.6 1.7 3.4 0.0 4.0 15.3 3.0 0.0 3.3 0.0

8 30 0 13.9 5.8 10.1 0.0 16.1 37.6 9.5 0.0 11.7 13.9

8 50 0 28.7 11.0 16.8 0.0 35.4 52.7 15.1 0.0 21.9 23.5

8 70 0 49.4 17.1 23.5 0.0 64.6 63.7 19.0 0.0 34.2 31.5

8 90 0 79.0 24.5 30.2 0.0 100.0 72.3 19.0 0.0 49.0 38.4

8 10 25 15.5 12.4 3.4 11.8 6.2 45.6 34.1 90.2 24.8 86.5

8 30 25 26.5 15.5 10.1 12.6 22.1 54.5 35.3 71.5 30.9 67.5

8 50 25 40.8 18.8 16.8 12.1 43.9 61.9 34.5 51.5 37.7 55.5

8 70 25 59.2 22.5 23.5 9.8 73.4 68.0 30.8 23.9 45.0 47.9

8 90 25 83.6 26.5 30.2 4.6 100.0 73.6 22.5 0.0 53.1 43.1

8 10 50 33.2 28.7 3.4 29.6 9.1 63.2 81.4 95.9 57.3 94.2

8 30 50 43.6 28.7 10.1 29.7 29.8 66.2 71.1 85.9 57.3 82.5

8 50 50 55.8 28.7 16.8 27.1 54.3 69.1 58.8 71.5 57.3 70.8

8 70 50 70.5 28.7 23.5 21.0 83.6 71.9 44.2 46.9 57.3 59.1

8 90 50 88.5 28.7 30.2 9.6 100.0 74.8 26.1 0.0 57.3 47.4

8 10 75 59.2 52.5 3.4 55.6 13.4 74.9 100.0 97.8 100.0 96.8

8 30 75 66.5 46.4 10.1 52.6 40.2 75.0 100.0 91.6 92.8 89.2

8 50 75 74.6 40.8 16.8 45.9 67.6 75.2 88.6 81.1 81.6 79.5

8 70 75 83.6 35.6 23.5 34.2 95.9 75.5 59.0 60.2 71.3 67.1

8 90 75 93.8 30.9 30.2 14.9 100.0 76.0 29.7 0.0 61.8 51.2

9 10 0 3.4 1.5 3.1 0.0 3.7 16.3 2.7 0.0 3.0 0.0

9 30 0 13.2 5.4 9.3 0.0 15.4 39.5 8.6 0.0 10.9 14.4

9 50 0 27.6 10.3 15.5 0.0 34.5 55.0 13.7 0.0 20.7 24.7

9 70 0 48.3 16.3 21.8 0.0 64.0 66.0 16.9 0.0 32.6 33.2

9 90 0 78.2 23.5 28.0 0.0 100.0 74.5 15.6 0.0 46.9 40.4

9 10 25 14.7 11.7 3.1 11.3 6.0 47.7 32.2 90.3 23.4 86.7

9 30 25 25.5 14.7 9.3 12.3 21.6 56.8 33.3 71.9 29.4 68.2

9 50 25 39.6 18.0 15.5 12.0 43.4 64.1 32.2 51.7 35.9 56.7

9 70 25 58.1 21.5 21.8 9.9 73.2 70.3 28.0 22.4 43.1 49.5

9 90 25 83.0 25.5 28.0 4.7 100.0 75.7 18.9 0.0 51.0 45.1

9 10 50 32.1 27.6 3.1 28.7 9.0 65.5 78.3 96.0 55.2 94.4

9 30 50 42.4 27.6 9.3 29.2 29.6 68.5 68.0 86.3 55.2 83.1

9 50 50 54.7 27.6 15.5 27.1 54.2 71.3 55.7 72.1 55.2 71.8

9 70 50 69.6 27.6 21.8 21.3 84.0 74.1 40.8 46.6 55.2 60.6

9 90 50 88.1 27.6 28.0 9.8 100.0 76.9 22.3 0.0 55.2 49.3

9 10 75 58.1 51.4 3.1 54.8 13.5 76.9 100.0 97.9 100.0 97.0

9 30 75 65.6 45.3 9.3 52.4 40.6 77.0 100.0 91.9 90.5 89.7

9 50 75 73.8 39.6 15.5 46.2 68.3 77.2 84.8 81.7 79.3 80.4

9 70 75 83.0 34.5 21.8 34.7 97.0 77.6 55.0 60.4 69.0 68.5

9 90 75 93.6 29.8 28.0 15.3 100.0 78.1 25.6 0.0 59.6 53.0
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Table 7: Model parameters for the LP model LP (k, h2
pathway, cR) for quantitative traits. (cont.)

k h2
path(%) cR(%) rMZ(%) rDZ(%) h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

10 10 0 3.1 1.4 2.9 0.0 3.5 17.1 2.4 0.0 2.8 0.0

10 30 0 12.5 5.1 8.7 0.0 14.8 41.2 7.9 0.0 10.2 14.8

10 50 0 26.6 9.8 14.5 0.0 33.7 56.9 12.5 0.0 19.6 25.8

10 70 0 47.2 15.6 20.3 0.0 63.4 67.9 15.0 0.0 31.1 34.7

10 90 0 77.6 22.6 26.1 0.0 100.0 76.2 12.8 0.0 45.2 42.1

10 10 25 14.0 11.1 2.9 10.9 5.8 49.6 30.5 90.5 22.2 86.9

10 30 25 24.6 14.0 8.7 12.0 21.1 58.8 31.4 72.3 28.0 68.9

10 50 25 38.6 17.2 14.5 12.0 42.8 66.1 30.1 51.8 34.4 57.8

10 70 25 57.2 20.7 20.3 10.0 73.0 72.1 25.6 20.7 41.4 50.9

10 90 25 82.5 24.6 26.1 4.8 100.0 77.4 15.8 0.0 49.1 46.8

10 10 50 31.1 26.6 2.9 28.0 8.9 67.4 75.5 96.2 53.3 94.6

10 30 50 41.3 26.6 8.7 28.8 29.4 70.4 65.2 86.6 53.3 83.7

10 50 50 53.7 26.6 14.5 27.1 54.1 73.2 52.9 72.5 53.3 72.8

10 70 50 68.8 26.6 20.3 21.5 84.2 75.9 37.8 46.3 53.3 61.9

10 90 50 87.7 26.6 26.1 10.1 100.0 78.6 18.9 0.0 53.3 51.0

10 10 75 57.2 50.4 2.9 54.0 13.6 78.6 100.0 98.0 100.0 97.1

10 30 75 64.7 44.2 8.7 52.2 41.0 78.7 100.0 92.2 88.4 90.1

10 50 75 73.1 38.6 14.5 46.4 68.9 78.9 81.4 82.2 77.2 81.2

10 70 75 82.5 33.5 20.3 35.2 97.9 79.2 51.5 60.5 67.0 69.6

10 90 75 93.3 28.8 26.1 15.7 100.0 79.7 22.0 0.0 57.6 54.7
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Table 8:

For each choice of the model parameters (k, h2
pathway, cR and µ), we calculated relevant genetic and

population parameters.

• Vc is the fraction of total phenotypic variance for the trait attributable to shared environment.

(Recall that cR is the fraction of the environmental variance for each pathway attributable to

shared environment.)

• λMZ and λs are the monozygotic twin and sibling relative risks for disease, respectively.

• h2
all is the true narrow-sense heritability (fraction of phenotypic variance explained by an

additive model including all genetic variants) on the liability scale.

• h2(ACE)
pop , h

2(ADE)
pop and h

2(PO)
pop are the apparent heritabilities on the liability scale, calculated

using these estimators. (See Section 1).

• π(ACE)
phan , π

(ADE)
phan and π

(PO)
phan ) are the missing heritabilities associated with each of the apparent

heritabilities. (See Section 1).
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits.

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

1 10 0 0.1 2.8 1.7 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0

1 10 0 1.0 1.9 1.4 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0

1 10 0 10.0 1.3 1.2 10.0 0.0 10.0 0.0 10.0 0.0 10.0 0.0

1 30 0 0.1 14.9 4.5 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0

1 30 0 1.0 5.6 2.6 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0

1 30 0 10.0 2.2 1.5 30.0 0.0 30.0 0.0 30.0 0.0 30.0 0.0

1 50 0 0.1 54.3 10.3 50.0 0.0 50.0 0.1 50.0 0.1 50.0 0.1

1 50 0 1.0 12.9 4.4 50.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0

1 50 0 10.0 3.2 1.9 50.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0

1 70 0 0.1 159.6 21.2 70.0 0.0 70.0 0.0 70.0 0.0 70.0 0.0

1 70 0 1.0 26.7 7.0 70.0 0.0 70.0 0.0 70.0 0.0 70.0 0.0

1 70 0 10.0 4.7 2.4 70.0 0.0 70.0 0.0 70.0 0.0 70.0 0.0

1 90 0 0.1 440.7 40.3 90.0 0.0 90.0 0.0 90.0 0.0 90.0 0.0

1 90 0 1.0 54.2 10.6 90.0 0.0 90.0 0.0 90.0 0.0 90.0 0.0

1 90 0 10.0 6.9 2.9 90.0 0.0 90.0 0.0 90.0 0.0 90.0 0.0

1 10 25 0.1 17.8 12.4 10.0 22.5 10.0 0.0 77.5 87.1 55.0 81.8

1 10 25 1.0 6.2 4.9 10.0 22.5 10.0 0.0 77.5 87.1 55.0 81.8

1 10 25 10.0 2.3 2.0 10.0 22.5 10.0 0.0 77.5 87.1 55.0 81.8

1 30 25 0.1 46.8 17.8 30.0 17.5 30.0 0.0 82.5 63.6 65.0 53.8

1 30 25 1.0 11.7 6.2 30.0 17.5 30.0 0.0 82.5 63.6 65.0 53.8

1 30 25 10.0 3.1 2.3 30.0 17.5 30.0 0.0 82.5 63.6 65.0 53.8

1 50 25 0.1 108.3 25.0 50.0 12.5 50.0 0.1 87.5 42.9 75.0 33.4

1 50 25 1.0 20.5 7.8 50.0 12.5 50.0 0.0 87.5 42.9 75.0 33.3

1 50 25 10.0 4.1 2.5 50.0 12.5 50.0 0.0 87.5 42.9 75.0 33.3

1 70 25 0.1 232.6 34.5 70.0 7.5 70.0 0.0 92.5 24.3 85.0 17.6

1 70 25 1.0 34.6 9.6 70.0 7.5 70.0 0.0 92.5 24.3 85.0 17.6

1 70 25 10.0 5.4 2.8 70.0 7.5 70.0 0.0 92.5 24.3 85.0 17.6

1 90 25 0.1 506.9 46.8 90.0 2.5 90.0 0.0 97.5 7.7 95.0 5.3

1 90 25 1.0 60.0 11.7 90.0 2.5 90.0 0.0 97.5 7.7 95.0 5.3

1 90 25 10.0 7.3 3.1 90.0 2.5 90.0 0.0 97.5 7.7 95.0 5.3

1 10 50 0.1 72.1 54.3 10.0 45.0 10.0 0.0 100.0 93.1 100.0 90.0

1 10 50 1.0 15.6 12.9 10.0 45.0 10.0 0.0 100.0 93.1 100.0 90.0

1 10 50 10.0 3.6 3.2 10.0 45.0 10.0 0.0 100.0 93.1 100.0 90.0

1 30 50 0.1 123.5 54.3 30.0 35.0 30.0 0.0 100.0 77.8 100.0 70.0

1 30 50 1.0 22.4 12.9 30.0 35.0 30.0 0.0 100.0 77.8 100.0 70.0

1 30 50 10.0 4.3 3.2 30.0 35.0 30.0 0.0 100.0 77.8 100.0 70.0

1 50 50 0.1 205.3 54.3 50.0 25.0 50.0 0.1 100.0 60.0 100.0 50.0

1 50 50 1.0 31.7 12.9 50.0 25.0 50.0 0.0 100.0 60.0 100.0 50.0

1 50 50 10.0 5.1 3.2 50.0 25.0 50.0 0.0 100.0 60.0 100.0 50.0

1 70 50 0.1 339.0 54.3 70.0 15.0 70.0 0.0 100.0 39.1 100.0 30.0

1 70 50 1.0 45.0 12.9 70.0 15.0 70.0 0.0 100.0 39.1 100.0 30.0

1 70 50 10.0 6.2 3.2 70.0 15.0 70.0 0.0 100.0 39.1 100.0 30.0

1 90 50 0.1 590.1 54.3 90.0 5.0 90.0 0.0 100.0 14.3 100.0 10.0

1 90 50 1.0 67.0 12.9 90.0 5.0 90.0 0.0 100.0 14.3 100.0 10.0

1 90 50 10.0 7.8 3.2 90.0 5.0 90.0 0.0 100.0 14.3 100.0 10.0

1 10 75 0.1 232.6 181.1 10.0 67.5 10.0 0.0 100.0 95.3 100.0 93.1

1 10 75 1.0 34.6 29.1 10.0 67.5 10.0 0.0 100.0 95.3 100.0 93.1

1 10 75 10.0 5.4 4.9 10.0 67.5 10.0 0.0 100.0 95.3 100.0 93.1

1 30 75 0.1 298.7 140.5 30.0 52.5 30.0 0.0 100.0 84.0 100.0 77.8

1 30 75 1.0 41.1 24.5 30.0 52.5 30.0 0.0 100.0 84.0 100.0 77.8

1 30 75 10.0 5.9 4.5 30.0 52.5 30.0 0.0 100.0 84.0 100.0 77.8

1 50 75 0.1 385.7 108.3 50.0 37.5 50.0 0.1 100.0 69.3 100.0 60.0

1 50 75 1.0 49.3 20.5 50.0 37.5 50.0 0.0 100.0 69.2 100.0 60.0

1 50 75 10.0 6.5 4.1 50.0 37.5 50.0 0.0 100.0 69.2 100.0 60.0

1 70 75 0.1 506.9 82.8 70.0 22.5 70.0 0.0 100.0 49.1 100.0 39.1

1 70 75 1.0 60.0 17.1 70.0 22.5 70.0 0.0 100.0 49.1 100.0 39.1

1 70 75 10.0 7.3 3.7 70.0 22.5 70.0 0.0 100.0 49.1 100.0 39.1

1 90 75 0.1 704.9 62.7 90.0 7.5 90.0 0.0 100.0 20.0 100.0 14.3

1 90 75 1.0 76.4 14.2 90.0 7.5 90.0 0.0 100.0 20.0 100.0 14.3

1 90 75 10.0 8.4 3.4 90.0 7.5 90.0 0.0 100.0 20.0 100.0 14.3
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

2 10 0 0.1 2.1 1.4 5.6 0.0 7.5 26.2 5.7 1.8 6.3 11.5

2 10 0 1.0 1.6 1.2 5.9 0.0 7.2 18.9 5.9 0.8 6.3 7.7

2 10 0 10.0 1.2 1.1 6.5 0.0 7.2 10.2 6.5 0.2 6.7 3.8

2 30 0 0.1 10.6 3.2 16.7 0.0 28.4 41.3 19.2 13.1 22.3 25.1

2 30 0 1.0 4.2 2.0 17.6 0.0 27.0 34.9 18.8 6.5 21.5 18.3

2 30 0 10.0 1.9 1.4 19.4 0.0 25.3 23.3 19.7 1.6 21.6 10.1

2 50 0 0.1 42.5 7.2 27.8 0.0 50.8 45.3 36.0 22.7 40.9 32.1

2 50 0 1.0 10.4 3.3 29.3 0.0 49.7 41.1 33.8 13.3 39.1 25.1

2 50 0 10.0 2.8 1.7 32.4 0.0 47.2 31.4 33.6 3.6 38.1 15.1

2 70 0 0.1 137.8 15.3 39.0 0.0 73.5 46.9 54.4 28.4 60.8 35.9

2 70 0 1.0 23.1 5.3 41.0 0.0 73.6 44.3 50.5 18.8 58.2 29.6

2 70 0 10.0 4.2 2.1 45.4 0.0 72.0 37.0 48.1 5.8 56.1 19.2

2 90 0 0.1 415.8 30.7 50.1 0.0 96.5 48.1 73.7 32.0 81.3 38.4

2 90 0 1.0 51.0 8.4 52.7 0.0 98.5 46.5 68.3 22.9 78.4 32.8

2 90 0 10.0 6.5 2.5 58.3 0.0 99.6 41.5 63.2 7.7 75.3 22.6

2 10 25 0.1 12.8 8.7 5.6 21.0 9.9 44.0 63.7 91.3 45.8 87.8

2 10 25 1.0 4.7 3.7 5.9 19.9 9.6 38.8 60.8 90.4 43.7 86.6

2 10 25 10.0 2.0 1.8 6.5 18.8 9.0 27.9 59.3 89.1 42.5 84.8

2 30 25 0.1 36.2 12.8 16.7 17.9 30.8 45.7 68.2 75.5 55.7 70.0

2 30 25 1.0 9.3 4.7 17.6 17.5 30.2 41.9 64.8 72.9 53.3 67.0

2 30 25 10.0 2.7 2.0 19.4 16.7 28.8 32.5 62.8 69.1 51.5 62.3

2 50 25 0.1 90.3 18.4 27.8 13.2 52.3 46.9 72.6 61.7 65.9 57.8

2 50 25 1.0 17.3 6.0 29.3 13.3 52.3 44.0 68.6 57.3 63.1 53.7

2 50 25 10.0 3.6 2.2 32.4 13.1 50.8 36.2 65.8 50.8 60.8 46.7

2 70 25 0.1 207.8 26.0 39.0 8.1 74.4 47.6 77.0 49.4 76.1 48.8

2 70 25 1.0 30.9 7.5 41.0 8.3 75.2 45.5 72.2 43.3 73.2 44.0

2 70 25 10.0 4.9 2.4 45.4 8.5 74.8 39.4 68.2 33.5 70.4 35.6

2 90 25 0.1 483.7 36.2 50.1 2.8 96.8 48.3 81.3 38.4 86.5 42.1

2 90 25 1.0 57.0 9.3 52.7 2.9 99.1 46.8 75.8 30.5 83.5 36.9

2 90 25 10.0 7.0 2.7 58.3 3.1 100.0 42.1 70.0 16.8 80.3 27.4

2 10 50 0.1 57.9 42.5 5.6 44.2 10.5 47.1 100.0 95.8 91.7 93.9

2 10 50 1.0 12.8 10.4 5.9 42.9 10.6 44.5 100.0 95.4 88.7 93.4

2 10 50 10.0 3.1 2.8 6.5 40.9 10.3 37.1 100.0 94.7 85.4 92.4

2 30 50 0.1 104.2 42.5 16.7 36.4 31.8 47.4 100.0 86.3 91.7 81.8

2 30 50 1.0 19.0 10.4 17.6 36.2 32.1 45.3 100.0 85.0 88.7 80.2

2 30 50 10.0 3.8 2.8 19.4 35.0 31.7 38.7 100.0 82.7 85.4 77.2

2 50 50 0.1 181.4 42.5 27.8 26.7 53.3 47.9 100.0 74.9 91.7 69.7

2 50 50 1.0 28.1 10.4 29.3 27.1 54.1 46.0 100.0 72.4 88.7 67.0

2 50 50 10.0 4.7 2.8 32.4 27.1 54.1 40.1 100.0 67.9 85.4 62.0

2 70 50 0.1 313.0 42.5 39.0 16.3 75.1 48.1 100.0 61.0 91.7 57.5

2 70 50 1.0 41.4 10.4 41.0 16.8 76.7 46.5 94.8 56.8 88.7 53.8

2 70 50 10.0 5.8 2.8 45.4 17.4 77.5 41.5 89.3 49.2 85.4 46.9

2 90 50 0.1 569.7 42.5 50.1 5.5 97.2 48.4 89.0 43.7 91.7 45.4

2 90 50 1.0 64.5 10.4 52.7 5.8 99.6 47.1 83.3 36.8 88.7 40.6

2 90 50 10.0 7.5 2.8 58.3 6.2 100.0 42.8 77.0 24.3 85.4 31.7

2 10 75 0.1 207.8 158.2 5.6 68.3 10.8 48.6 100.0 97.3 100.0 96.0

2 10 75 1.0 30.9 25.5 5.9 67.5 11.1 47.5 100.0 97.1 100.0 95.7

2 10 75 10.0 4.9 4.4 6.5 65.6 11.5 43.4 100.0 96.7 100.0 95.2

2 30 75 0.1 272.8 119.9 16.7 55.3 32.5 48.6 100.0 90.6 100.0 87.0

2 30 75 1.0 37.5 21.0 17.6 55.6 33.4 47.5 100.0 89.8 100.0 86.1

2 30 75 10.0 5.5 4.0 19.4 55.0 34.4 43.4 100.0 88.3 100.0 84.1

2 50 75 0.1 360.0 90.3 27.8 40.3 54.2 48.7 100.0 81.5 100.0 76.5

2 50 75 1.0 45.9 17.3 29.3 41.2 55.7 47.5 100.0 79.9 100.0 74.6

2 50 75 10.0 6.1 3.6 32.4 41.8 57.3 43.4 100.0 76.7 100.0 71.0

2 70 75 0.1 483.7 67.3 39.0 24.6 75.8 48.6 100.0 68.4 100.0 63.8

2 70 75 1.0 57.0 14.1 41.0 25.4 78.0 47.4 100.0 65.3 100.0 60.8

2 70 75 10.0 7.0 3.3 45.4 26.5 80.2 43.4 100.0 59.2 100.0 55.1

2 90 75 0.1 689.5 49.7 50.1 8.3 97.5 48.6 96.8 48.2 97.0 48.3

2 90 75 1.0 74.6 11.5 52.7 8.7 100.0 47.4 90.9 42.0 94.0 43.9

2 90 75 10.0 8.2 3.0 58.3 9.3 100.0 43.5 84.1 30.7 90.5 35.5
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

3 10 0 0.1 1.8 1.3 3.9 0.0 6.2 36.7 4.0 0.7 4.7 16.5

3 10 0 1.0 1.4 1.2 4.2 0.0 5.8 27.2 4.3 0.3 4.8 11.2

3 10 0 10.0 1.2 1.1 4.9 0.0 5.9 15.6 4.9 0.1 5.2 5.9

3 30 0 0.1 8.7 2.6 11.8 0.0 27.3 56.7 14.0 15.6 18.4 35.9

3 30 0 1.0 3.6 1.8 12.7 0.0 24.9 49.0 13.6 6.6 17.4 26.8

3 30 0 10.0 1.7 1.3 14.8 0.0 22.6 34.5 15.0 1.2 17.5 15.5

3 50 0 0.1 36.8 5.8 19.6 0.0 51.0 61.5 28.5 31.2 36.0 45.5

3 50 0 1.0 9.1 2.8 21.2 0.0 49.0 56.8 25.6 17.0 33.4 36.5

3 50 0 10.0 2.6 1.6 24.7 0.0 45.1 45.2 25.6 3.5 32.1 23.0

3 70 0 0.1 126.6 12.7 27.5 0.0 75.3 63.4 45.9 40.0 55.7 50.5

3 70 0 1.0 21.3 4.6 29.7 0.0 75.3 60.6 40.0 25.9 51.8 42.7

3 70 0 10.0 3.9 1.9 34.6 0.0 72.5 52.3 36.8 6.1 48.7 29.0

3 90 0 0.1 402.2 26.2 35.4 0.0 100.0 64.6 64.6 45.1 76.4 53.7

3 90 0 1.0 49.2 7.3 38.2 0.0 100.0 63.0 56.3 32.2 71.9 46.9

3 90 0 10.0 6.3 2.3 44.4 0.0 100.0 57.5 48.5 8.4 67.2 33.9

3 10 25 0.1 10.5 7.1 3.9 19.9 9.8 60.0 56.3 93.0 40.8 90.4

3 10 25 1.0 4.1 3.2 4.2 18.2 9.2 54.0 52.1 91.9 37.8 88.8

3 10 25 10.0 1.8 1.6 4.9 16.6 8.3 40.6 49.9 90.1 36.0 86.3

3 30 25 0.1 31.1 10.5 11.8 18.0 31.1 62.0 60.4 80.5 50.6 76.7

3 30 25 1.0 8.1 4.1 12.7 17.4 30.1 57.7 55.5 77.1 47.0 72.9

3 30 25 10.0 2.5 1.8 14.8 16.0 27.8 46.7 52.7 71.9 44.4 66.6

3 50 25 0.1 81.2 15.3 19.6 13.6 53.5 63.3 64.4 69.5 60.8 67.7

3 50 25 1.0 15.6 5.1 21.2 13.7 53.2 60.2 58.4 63.7 56.7 62.6

3 50 25 10.0 3.4 2.0 24.7 13.4 50.7 51.3 54.4 54.6 53.2 53.6

3 70 25 0.1 194.7 22.0 27.5 8.5 76.7 64.1 68.4 59.7 71.2 61.3

3 70 25 1.0 28.9 6.5 29.7 8.8 77.9 61.9 61.1 51.4 66.7 55.5

3 70 25 10.0 4.7 2.2 34.6 9.1 76.9 55.1 55.2 37.3 62.4 44.6

3 90 25 0.1 470.8 31.1 35.4 2.9 100.0 64.8 72.3 51.0 81.7 56.7

3 90 25 1.0 55.4 8.1 38.2 3.1 100.0 63.3 63.7 40.0 77.1 50.5

3 90 25 10.0 6.8 2.5 44.4 3.4 100.0 58.3 54.9 19.1 72.1 38.4

3 10 50 0.1 51.0 36.8 3.9 43.5 10.8 63.5 100.0 96.9 87.1 95.5

3 10 50 1.0 11.3 9.1 4.2 41.3 10.8 60.8 100.0 96.4 82.4 94.9

3 10 50 10.0 2.9 2.6 4.9 38.2 10.4 52.4 100.0 95.5 77.2 93.6

3 30 50 0.1 94.3 36.8 11.8 37.1 32.7 63.9 100.0 89.7 87.1 86.4

3 30 50 1.0 17.3 9.1 12.7 36.6 33.1 61.6 100.0 88.1 82.4 84.6

3 30 50 10.0 3.5 2.6 14.8 34.7 32.4 54.2 99.6 85.1 77.2 80.8

3 50 50 0.1 168.8 36.8 19.6 27.6 55.1 64.4 100.0 80.9 87.1 77.5

3 50 50 1.0 26.1 9.1 21.2 28.2 56.3 62.4 95.5 77.8 82.4 74.3

3 50 50 10.0 4.4 2.6 24.7 28.0 56.0 55.9 87.7 71.9 77.2 68.0

3 70 50 0.1 298.9 36.8 27.5 17.0 78.0 64.7 91.6 69.9 87.1 68.4

3 70 50 1.0 39.5 9.1 29.7 17.8 80.3 63.0 83.5 64.4 82.4 64.0

3 70 50 10.0 5.5 2.6 34.6 18.7 81.4 57.5 75.1 54.0 77.2 55.2

3 90 50 0.1 558.4 36.8 35.4 5.8 100.0 65.0 80.0 55.7 87.1 59.3

3 90 50 1.0 63.1 9.1 38.2 6.2 100.0 63.6 71.2 46.4 82.4 53.7

3 90 50 10.0 7.4 2.6 44.4 6.9 100.0 59.0 61.5 27.7 77.2 42.4

3 10 75 0.1 194.7 146.3 3.9 68.5 11.3 65.2 100.0 98.0 100.0 97.1

3 10 75 1.0 28.9 23.6 4.2 67.0 11.8 64.0 100.0 97.8 100.0 96.8

3 10 75 10.0 4.7 4.2 4.9 64.1 12.2 59.7 100.0 97.3 100.0 96.1

3 30 75 0.1 258.8 109.4 11.8 56.8 33.9 65.2 100.0 93.1 100.0 90.6

3 30 75 1.0 35.6 19.2 12.7 57.2 35.4 64.0 100.0 92.3 100.0 89.5

3 30 75 10.0 5.2 3.7 14.8 55.9 36.7 59.7 100.0 90.4 100.0 87.2

3 50 75 0.1 346.0 81.2 19.6 41.9 56.5 65.3 100.0 86.3 100.0 82.8

3 50 75 1.0 44.0 15.6 21.2 43.2 58.9 64.0 100.0 84.3 100.0 80.7

3 50 75 10.0 5.9 3.4 24.7 44.0 61.3 59.7 100.0 80.3 100.0 76.2

3 70 75 0.1 470.8 59.7 27.5 25.7 79.1 65.2 100.0 76.1 100.0 73.3

3 70 75 1.0 55.4 12.6 29.7 27.0 82.4 64.0 100.0 72.2 98.7 69.9

3 70 75 10.0 6.8 3.0 34.6 28.8 85.8 59.7 96.4 64.1 92.9 62.8

3 90 75 0.1 680.8 43.4 35.4 8.8 100.0 65.2 87.8 59.7 92.5 61.7

3 90 75 1.0 73.6 10.2 38.2 9.4 100.0 63.9 78.8 51.5 87.8 56.5

3 90 75 10.0 8.1 2.7 44.4 10.4 100.0 59.8 68.2 34.9 82.3 46.0
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

4 10 0 0.1 1.6 1.2 3.1 0.0 5.4 42.6 3.0 0.0 3.8 19.4

4 10 0 1.0 1.4 1.1 3.4 0.0 5.0 32.2 3.4 0.0 3.9 13.4

4 10 0 10.0 1.1 1.1 4.0 0.0 5.0 19.2 4.0 0.0 4.4 7.3

4 30 0 0.1 7.6 2.3 9.2 0.0 26.3 65.0 10.8 14.5 16.0 42.2

4 30 0 1.0 3.2 1.6 10.1 0.0 23.4 56.9 10.6 4.5 14.9 32.1

4 30 0 10.0 1.6 1.2 12.1 0.0 20.7 41.4 12.2 0.2 15.0 19.2

4 50 0 0.1 33.3 5.1 15.3 0.0 51.1 70.0 23.6 35.1 32.8 53.3

4 50 0 1.0 8.3 2.6 16.8 0.0 48.4 65.3 20.3 17.4 29.7 43.4

4 50 0 10.0 2.4 1.5 20.2 0.0 43.4 53.4 20.6 1.8 28.2 28.3

4 70 0 0.1 119.2 11.2 21.5 0.0 76.5 71.9 40.1 46.4 52.2 58.8

4 70 0 1.0 20.1 4.1 23.5 0.0 76.2 69.1 33.1 29.0 47.5 50.4

4 70 0 10.0 3.8 1.8 28.3 0.0 72.4 60.9 29.5 4.2 43.8 35.4

4 90 0 0.1 392.8 23.5 27.6 0.0 100.0 73.1 58.3 52.6 73.1 62.2

4 90 0 1.0 48.0 6.6 30.3 0.0 100.0 71.5 48.2 37.1 67.5 55.1

4 90 0 10.0 6.2 2.2 36.4 0.0 100.0 66.2 38.8 6.1 61.8 41.1

4 10 25 0.1 9.2 6.2 3.1 19.0 9.7 68.5 51.3 94.0 37.4 91.8

4 10 25 1.0 3.6 2.9 3.4 17.0 8.9 62.3 46.4 92.8 33.9 90.1

4 10 25 10.0 1.7 1.6 4.0 15.2 7.8 48.3 43.9 90.8 31.9 87.3

4 30 25 0.1 28.0 9.2 9.2 18.1 31.2 70.5 55.1 83.3 47.2 80.5

4 30 25 1.0 7.4 3.6 10.1 17.2 29.9 66.3 49.3 79.5 42.8 76.4

4 30 25 10.0 2.3 1.7 12.1 15.5 26.9 54.9 46.1 73.7 39.7 69.4

4 50 25 0.1 75.3 13.5 15.3 13.9 54.3 71.8 58.8 74.0 57.3 73.3

4 50 25 1.0 14.5 4.6 16.8 14.0 53.8 68.7 51.6 67.4 52.3 67.9

4 50 25 10.0 3.2 1.9 20.2 13.5 50.4 59.9 47.0 56.9 48.1 58.0

4 70 25 0.1 185.9 19.6 21.5 8.7 78.3 72.5 62.5 65.6 67.7 68.3

4 70 25 1.0 27.6 5.9 23.5 9.1 79.7 70.4 53.6 56.1 62.3 62.2

4 70 25 10.0 4.5 2.1 28.3 9.5 78.1 63.8 46.6 39.2 57.1 50.4

4 90 25 0.1 462.0 28.0 27.6 3.0 100.0 73.2 66.0 58.1 78.4 64.8

4 90 25 1.0 54.3 7.4 30.3 3.3 100.0 71.8 55.4 45.4 72.7 58.4

4 90 25 10.0 6.7 2.3 36.4 3.7 100.0 67.0 44.8 18.7 66.6 45.4

4 10 50 0.1 46.6 33.3 3.1 42.8 11.0 72.0 100.0 97.4 83.8 96.3

4 10 50 1.0 10.4 8.3 3.4 40.1 11.0 69.3 100.0 97.0 78.1 95.7

4 10 50 10.0 2.7 2.4 4.0 36.3 10.4 61.0 100.0 96.0 71.6 94.4

4 30 50 0.1 88.0 33.3 9.2 37.5 33.4 72.4 100.0 91.6 83.8 89.0

4 30 50 1.0 16.2 8.3 10.1 36.8 33.8 70.2 100.0 89.9 78.1 87.1

4 30 50 10.0 3.4 2.4 12.1 34.3 32.7 62.9 91.1 86.7 71.6 83.1

4 50 50 0.1 160.5 33.3 15.3 28.2 56.4 72.8 97.6 84.3 83.8 81.7

4 50 50 1.0 24.8 8.3 16.8 28.9 57.8 70.9 88.3 81.0 78.1 78.5

4 50 50 10.0 4.2 2.4 20.2 28.6 57.2 64.6 78.8 74.4 71.6 71.8

4 70 50 0.1 289.3 33.3 21.5 17.5 79.9 73.1 85.8 74.9 83.8 74.4

4 70 50 1.0 38.2 8.3 23.5 18.5 82.7 71.5 75.8 68.9 78.1 69.8

4 70 50 10.0 5.4 2.4 28.3 19.6 83.8 66.2 65.5 56.8 71.6 60.5

4 90 50 0.1 550.5 33.3 27.6 6.0 100.0 73.4 73.8 62.5 83.8 67.0

4 90 50 1.0 62.2 8.3 30.3 6.5 100.0 72.1 62.9 51.8 78.1 61.2

4 90 50 10.0 7.2 2.4 36.4 7.4 100.0 67.7 51.0 28.6 71.6 49.2

4 10 75 0.1 185.9 138.4 3.1 68.4 11.6 73.6 100.0 98.4 100.0 97.7

4 10 75 1.0 27.6 22.3 3.4 66.6 12.2 72.5 100.0 98.2 100.0 97.4

4 10 75 10.0 4.5 4.0 4.0 62.9 12.8 68.3 100.0 97.7 100.0 96.7

4 30 75 0.1 249.4 102.5 9.2 57.8 34.9 73.6 100.0 94.5 100.0 92.5

4 30 75 1.0 34.2 18.0 10.1 58.1 36.7 72.5 100.0 93.6 100.0 91.4

4 30 75 10.0 5.1 3.6 12.1 56.4 38.3 68.3 100.0 91.7 100.0 89.0

4 50 75 0.1 336.4 75.3 15.3 42.9 58.1 73.7 100.0 88.9 100.0 86.3

4 50 75 1.0 42.8 14.5 16.8 44.5 61.1 72.5 100.0 86.9 100.0 84.2

4 50 75 10.0 5.8 3.2 20.2 45.4 63.9 68.4 100.0 82.5 98.5 79.5

4 70 75 0.1 462.0 54.8 21.5 26.5 81.4 73.6 100.0 80.4 100.0 78.6

4 70 75 1.0 54.3 11.7 23.5 28.2 85.5 72.4 99.3 76.3 94.7 75.1

4 70 75 10.0 6.7 2.9 28.3 30.3 89.6 68.4 86.2 67.2 87.3 67.6

4 90 75 0.1 674.8 39.4 27.6 9.1 100.0 73.6 81.7 66.2 89.3 69.1

4 90 75 1.0 72.8 9.3 30.3 9.8 100.0 72.4 70.4 57.0 83.5 63.8

4 90 75 10.0 8.0 2.6 36.4 11.2 100.0 68.5 57.4 36.6 76.7 52.6
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

5 10 0 0.1 1.5 1.2 2.5 0.0 4.7 46.5 2.5 0.0 3.2 21.4

5 10 0 1.0 1.3 1.1 2.8 0.0 4.4 35.6 2.8 0.0 3.3 15.0

5 10 0 10.0 1.1 1.1 3.5 0.0 4.4 21.8 3.4 0.0 3.8 8.4

5 30 0 0.1 6.8 2.1 7.6 0.0 25.5 70.2 8.6 11.3 14.2 46.5

5 30 0 1.0 3.0 1.6 8.4 0.0 22.2 62.1 8.5 1.3 13.1 35.7

5 30 0 10.0 1.6 1.2 10.4 0.0 19.3 46.3 10.2 0.0 13.3 21.9

5 50 0 0.1 30.8 4.6 12.6 0.0 51.0 75.3 20.0 36.9 30.3 58.4

5 50 0 1.0 7.8 2.4 14.0 0.0 47.8 70.7 16.6 15.8 27.0 48.1

5 50 0 10.0 2.3 1.4 17.3 0.0 42.0 58.9 17.1 0.0 25.4 32.2

5 70 0 0.1 113.8 10.1 17.7 0.0 77.3 77.1 35.7 50.4 49.6 64.3

5 70 0 1.0 19.2 3.8 19.6 0.0 76.9 74.5 28.1 30.1 44.3 55.7

5 70 0 10.0 3.6 1.7 24.2 0.0 72.2 66.5 24.3 0.7 40.3 40.0

5 90 0 0.1 385.8 21.5 22.8 0.0 100.0 78.2 53.5 57.4 70.5 67.7

5 90 0 1.0 47.1 6.1 25.2 0.0 100.0 76.7 42.0 40.0 64.2 60.7

5 90 0 10.0 6.1 2.1 31.1 0.0 100.0 71.8 31.6 1.7 57.8 46.2

5 10 25 0.1 8.3 5.6 2.5 18.3 9.6 73.7 47.6 94.7 34.9 92.8

5 10 25 1.0 3.4 2.7 2.8 16.0 8.7 67.7 42.3 93.4 31.1 91.0

5 10 25 10.0 1.6 1.5 3.5 14.1 7.4 53.5 39.6 91.3 28.9 88.1

5 30 25 0.1 25.8 8.3 7.6 18.1 31.3 75.8 51.2 85.2 44.6 83.0

5 30 25 1.0 6.9 3.4 8.4 17.1 29.7 71.7 44.8 81.2 39.7 78.8

5 30 25 10.0 2.2 1.6 10.4 15.0 26.2 60.5 41.4 75.0 36.3 71.5

5 50 25 0.1 71.1 12.3 12.6 14.1 54.8 77.0 54.6 76.9 54.7 76.9

5 50 25 1.0 13.8 4.3 14.0 14.2 54.1 74.1 46.6 69.9 49.1 71.4

5 50 25 10.0 3.1 1.8 17.3 13.5 50.0 65.5 41.6 58.5 44.4 61.2

5 70 25 0.1 179.4 17.9 17.7 8.9 79.5 77.7 58.0 69.5 65.2 72.8

5 70 25 1.0 26.7 5.4 19.6 9.4 80.9 75.7 48.1 59.1 59.0 66.7

5 70 25 10.0 4.4 2.0 24.2 9.8 78.8 69.4 40.3 40.0 53.1 54.5

5 90 25 0.1 455.3 25.8 22.8 3.1 100.0 78.4 61.2 62.8 75.9 70.0

5 90 25 1.0 53.5 6.9 25.2 3.4 100.0 77.0 49.2 48.7 69.4 63.6

5 90 25 10.0 6.6 2.2 31.1 3.9 100.0 72.5 37.3 16.7 62.5 50.3

5 10 50 0.1 43.4 30.8 2.5 42.3 11.1 77.2 100.0 97.8 81.4 96.9

5 10 50 1.0 9.8 7.8 2.8 39.1 11.1 74.7 100.0 97.4 74.8 96.3

5 10 50 10.0 2.6 2.3 3.5 34.8 10.3 66.6 96.0 96.4 67.4 94.9

5 30 50 0.1 83.3 30.8 7.6 37.8 33.9 77.6 100.0 92.8 81.4 90.7

5 30 50 1.0 15.4 7.8 8.4 36.9 34.3 75.5 95.1 91.2 74.8 88.8

5 30 50 10.0 3.2 2.3 10.4 33.9 32.8 68.5 84.7 87.8 67.4 84.7

5 50 50 0.1 154.3 30.8 12.6 28.6 57.3 78.0 93.4 86.5 81.4 84.5

5 50 50 1.0 23.9 7.8 14.0 29.4 58.8 76.2 82.8 83.1 74.8 81.3

5 50 50 10.0 4.1 2.3 17.3 28.9 57.9 70.2 72.2 76.1 67.4 74.4

5 70 50 0.1 282.2 30.8 17.7 17.9 81.4 78.2 81.4 78.2 81.4 78.2

5 70 50 1.0 37.2 7.8 19.6 19.1 84.5 76.8 70.0 71.9 74.8 73.8

5 70 50 10.0 5.3 2.3 24.2 20.2 85.5 71.8 58.4 58.6 67.4 64.2

5 90 50 0.1 544.6 30.8 22.8 6.2 100.0 78.5 69.0 67.0 81.4 72.0

5 90 50 1.0 61.4 7.8 25.2 6.8 100.0 77.3 56.6 55.4 74.8 66.3

5 90 50 10.0 7.2 2.3 31.1 7.8 100.0 73.2 43.2 28.0 67.4 54.0

5 10 75 0.1 179.4 132.6 2.5 68.3 11.9 78.7 100.0 98.7 100.0 98.1

5 10 75 1.0 26.7 21.4 2.8 66.1 12.6 77.7 100.0 98.5 100.0 97.8

5 10 75 10.0 4.4 3.9 3.5 61.9 13.2 73.8 100.0 98.0 100.0 97.1

5 30 75 0.1 242.4 97.5 7.6 58.5 35.6 78.7 100.0 95.4 100.0 93.7

5 30 75 1.0 33.3 17.2 8.4 58.7 37.7 77.7 100.0 94.5 100.0 92.7

5 30 75 10.0 4.9 3.4 10.4 56.6 39.5 73.8 100.0 92.6 100.0 90.3

5 50 75 0.1 329.3 71.1 12.6 43.7 59.4 78.8 100.0 90.6 100.0 88.5

5 50 75 1.0 41.8 13.8 14.0 45.5 62.7 77.7 100.0 88.6 100.0 86.4

5 50 75 10.0 5.6 3.1 17.3 46.4 65.9 73.8 100.0 84.1 94.4 81.7

5 70 75 0.1 455.3 51.3 17.7 27.2 83.1 78.7 100.0 83.2 98.1 81.9

5 70 75 1.0 53.5 11.0 19.6 29.1 87.8 77.6 93.5 79.0 91.6 78.6

5 70 75 10.0 6.6 2.8 24.2 31.5 92.4 73.9 78.6 69.2 83.2 71.0

5 90 75 0.1 670.2 36.6 22.8 9.3 100.0 78.7 77.0 70.4 86.9 73.8

5 90 75 1.0 72.3 8.7 25.2 10.2 100.0 77.6 64.1 60.6 80.3 68.6

5 90 75 10.0 8.0 2.5 31.1 11.9 100.0 73.9 49.3 36.9 72.5 57.2
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

6 10 0 0.1 1.5 1.2 2.2 0.0 4.3 49.4 2.1 0.0 2.8 22.9

6 10 0 1.0 1.3 1.1 2.4 0.0 3.9 38.1 2.4 0.0 2.9 16.2

6 10 0 10.0 1.1 1.1 3.0 0.0 4.0 23.9 3.0 0.0 3.3 9.2

6 30 0 0.1 6.2 2.0 6.5 0.0 24.8 73.9 6.9 6.6 12.9 49.7

6 30 0 1.0 2.8 1.5 7.2 0.0 21.2 65.9 7.1 0.0 11.8 38.5

6 30 0 10.0 1.5 1.2 9.1 0.0 18.1 49.9 8.9 0.0 11.9 24.1

6 50 0 0.1 28.9 4.2 10.8 0.0 50.9 78.9 17.2 37.5 28.5 62.2

6 50 0 1.0 7.3 2.2 12.1 0.0 47.2 74.4 13.8 12.9 25.0 51.7

6 50 0 10.0 2.3 1.4 15.1 0.0 40.8 63.0 14.6 0.0 23.3 35.2

6 70 0 0.1 109.5 9.3 15.1 0.0 77.9 80.6 32.3 53.1 47.5 68.2

6 70 0 1.0 18.5 3.6 16.9 0.0 77.3 78.1 24.1 29.9 41.9 59.6

6 70 0 10.0 3.5 1.7 21.2 0.0 71.9 70.6 20.3 0.0 37.5 43.6

6 90 0 0.1 380.2 20.1 19.4 0.0 100.0 81.7 49.7 60.9 68.4 71.6

6 90 0 1.0 46.4 5.8 21.7 0.0 100.0 80.3 37.2 41.6 61.5 64.7

6 90 0 10.0 6.0 2.0 27.2 0.0 100.0 75.7 26.0 0.0 54.6 50.1

6 10 25 0.1 7.6 5.1 2.2 17.7 9.5 77.4 44.7 95.2 33.0 93.4

6 10 25 1.0 3.2 2.5 2.4 15.3 8.5 71.4 39.1 93.8 28.9 91.6

6 10 25 10.0 1.6 1.5 3.0 13.2 7.1 57.4 36.4 91.7 26.6 88.6

6 30 25 0.1 24.1 7.6 6.5 18.1 31.4 79.4 48.1 86.5 42.5 84.8

6 30 25 1.0 6.5 3.2 7.2 16.9 29.5 75.4 41.3 82.4 37.3 80.6

6 30 25 10.0 2.1 1.6 9.1 14.6 25.6 64.5 37.8 76.0 33.7 73.1

6 50 25 0.1 67.8 11.3 10.8 14.2 55.2 80.5 51.3 79.0 52.6 79.5

6 50 25 1.0 13.1 4.0 12.1 14.3 54.3 77.8 42.7 71.7 46.5 74.1

6 50 25 10.0 3.0 1.8 15.1 13.5 49.6 69.5 37.5 59.7 41.5 63.6

6 70 25 0.1 174.3 16.6 15.1 9.0 80.4 81.2 54.4 72.2 63.1 76.0

6 70 25 1.0 25.9 5.1 16.9 9.6 81.9 79.4 43.7 61.3 56.4 70.0

6 70 25 10.0 4.2 1.9 21.2 10.0 79.3 73.3 35.4 40.2 50.1 57.7

6 90 25 0.1 450.0 24.1 19.4 3.2 100.0 81.8 57.4 66.1 73.9 73.7

6 90 25 1.0 52.8 6.5 21.7 3.5 100.0 80.6 44.3 50.9 66.8 67.5

6 90 25 10.0 6.5 2.1 27.2 4.0 100.0 76.4 31.4 13.2 59.3 54.1

6 10 50 0.1 41.0 28.9 2.2 41.8 11.2 80.7 100.0 98.1 79.4 97.3

6 10 50 1.0 9.3 7.3 2.4 38.3 11.1 78.3 100.0 97.6 72.2 96.7

6 10 50 10.0 2.5 2.3 3.0 33.6 10.3 70.6 91.1 96.7 64.2 95.3

6 30 50 0.1 79.7 28.9 6.5 38.0 34.2 81.1 100.0 93.6 79.4 91.8

6 30 50 1.0 14.7 7.3 7.2 36.9 34.6 79.1 91.0 92.0 72.2 90.0

6 30 50 10.0 3.2 2.3 9.1 33.5 32.9 72.4 79.8 88.6 64.2 85.9

6 50 50 0.1 149.5 28.9 10.8 29.0 58.0 81.5 90.1 88.1 79.4 86.4

6 50 50 1.0 23.1 7.3 12.1 29.8 59.6 79.8 78.5 84.6 72.2 83.3

6 50 50 10.0 4.0 2.3 15.1 29.2 58.4 74.1 67.0 77.4 64.2 76.4

6 70 50 0.1 276.5 28.9 15.1 18.2 82.5 81.7 77.8 80.6 79.4 81.0

6 70 50 1.0 36.5 7.3 16.9 19.5 85.9 80.3 65.4 74.1 72.2 76.6

6 70 50 10.0 5.2 2.3 21.2 20.8 86.8 75.6 52.8 59.9 64.2 67.0

6 90 50 0.1 539.8 28.9 19.4 6.3 100.0 82.0 65.2 70.2 79.4 75.5

6 90 50 1.0 60.9 7.3 21.7 7.0 100.0 80.9 51.6 57.8 72.2 69.9

6 90 50 10.0 7.1 2.3 27.2 8.1 100.0 77.0 37.0 26.4 64.2 57.6

6 10 75 0.1 174.3 128.0 2.2 68.2 12.1 82.1 100.0 98.9 100.0 98.4

6 10 75 1.0 25.9 20.7 2.4 65.7 12.8 81.2 100.0 98.7 100.0 98.1

6 10 75 10.0 4.2 3.8 3.0 61.0 13.5 77.5 100.0 98.2 100.0 97.4

6 30 75 0.1 236.9 93.6 6.5 59.0 36.2 82.1 100.0 96.0 100.0 94.6

6 30 75 1.0 32.5 16.5 7.2 59.2 38.5 81.2 100.0 95.2 100.0 93.6

6 30 75 10.0 4.8 3.3 9.1 56.8 40.4 77.5 100.0 93.3 100.0 91.2

6 50 75 0.1 323.5 67.8 10.8 44.4 60.4 82.2 100.0 91.8 100.0 90.0

6 50 75 1.0 41.1 13.1 12.1 46.3 64.1 81.2 100.0 89.9 100.0 88.0

6 50 75 10.0 5.5 3.0 15.1 47.2 67.4 77.6 100.0 85.3 91.2 83.4

6 70 75 0.1 450.0 48.6 15.1 27.7 84.5 82.1 100.0 85.2 96.3 84.3

6 70 75 1.0 52.8 10.4 16.9 29.8 89.6 81.1 88.8 81.0 89.1 81.0

6 70 75 10.0 6.5 2.7 21.2 32.5 94.6 77.6 72.5 70.8 79.8 73.5

6 90 75 0.1 666.5 34.5 19.4 9.6 100.0 82.1 73.2 73.4 85.0 77.1

6 90 75 1.0 71.9 8.3 21.7 10.5 100.0 81.1 59.0 63.2 77.7 72.0

6 90 75 10.0 7.9 2.4 27.2 12.4 100.0 77.7 42.8 36.4 69.2 60.7
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

7 10 0 0.1 1.4 1.1 1.9 0.0 3.9 51.5 1.8 0.0 2.5 24.1

7 10 0 1.0 1.2 1.1 2.1 0.0 3.5 40.1 2.1 0.0 2.6 17.2

7 10 0 10.0 1.1 1.0 2.7 0.0 3.6 25.5 2.7 0.0 3.0 9.9

7 30 0 0.1 5.8 1.9 5.7 0.0 24.1 76.5 5.7 0.3 11.8 52.2

7 30 0 1.0 2.7 1.4 6.4 0.0 20.4 68.7 5.9 0.0 10.8 40.7

7 30 0 10.0 1.5 1.2 8.1 0.0 17.2 52.8 7.8 0.0 10.9 25.8

7 50 0 0.1 27.4 3.9 9.4 0.0 50.8 81.5 14.9 37.1 26.9 65.1

7 50 0 1.0 7.0 2.1 10.6 0.0 46.7 77.3 11.6 8.7 23.3 54.5

7 50 0 10.0 2.2 1.4 13.5 0.0 39.8 66.1 12.6 0.0 21.7 37.6

7 70 0 0.1 106.1 8.7 13.2 0.0 78.5 83.2 29.4 55.1 45.8 71.1

7 70 0 1.0 17.9 3.4 14.9 0.0 77.6 80.8 20.9 28.8 39.8 62.6

7 70 0 10.0 3.5 1.6 18.9 0.0 71.6 73.6 17.2 0.0 35.3 46.5

7 90 0 0.1 375.5 18.9 17.0 0.0 100.0 84.2 46.5 63.4 66.7 74.5

7 90 0 1.0 45.8 5.5 19.1 0.0 100.0 82.9 33.2 42.3 59.4 67.8

7 90 0 10.0 5.9 2.0 24.3 0.0 100.0 78.5 21.4 0.0 52.0 53.2

7 10 25 0.1 7.1 4.8 1.9 17.2 9.5 80.0 42.3 95.5 31.3 94.0

7 10 25 1.0 3.0 2.4 2.1 14.6 8.3 74.2 36.5 94.2 27.1 92.2

7 10 25 10.0 1.6 1.4 2.7 12.5 6.8 60.5 33.8 92.0 24.8 89.1

7 30 25 0.1 22.8 7.1 5.7 18.1 31.4 82.0 45.5 87.6 40.8 86.1

7 30 25 1.0 6.2 3.0 6.4 16.7 29.3 78.2 38.4 83.4 35.4 82.0

7 30 25 10.0 2.1 1.6 8.1 14.3 25.0 67.6 34.9 76.8 31.6 74.4

7 50 25 0.1 65.2 10.6 9.4 14.3 55.5 83.1 48.5 80.6 50.8 81.5

7 50 25 1.0 12.7 3.8 10.6 14.4 54.4 80.5 39.5 73.1 44.4 76.1

7 50 25 10.0 2.9 1.7 13.5 13.5 49.2 72.6 34.2 60.5 39.2 65.6

7 70 25 0.1 170.1 15.6 13.2 9.1 81.2 83.7 51.4 74.3 61.3 78.5

7 70 25 1.0 25.3 4.9 14.9 9.7 82.6 82.0 40.0 62.8 54.2 72.5

7 70 25 10.0 4.2 1.9 18.9 10.1 79.6 76.3 31.5 40.0 47.5 60.2

7 90 25 0.1 445.5 22.8 17.0 3.2 100.0 84.3 54.2 68.7 72.2 76.5

7 90 25 1.0 52.3 6.2 19.1 3.6 100.0 83.1 40.2 52.4 64.6 70.4

7 90 25 10.0 6.4 2.1 24.3 4.1 100.0 79.2 26.5 8.4 56.6 57.1

7 10 50 0.1 39.1 27.4 1.9 41.3 11.3 83.3 100.0 98.3 77.7 97.6

7 10 50 1.0 8.9 7.0 2.1 37.6 11.2 81.0 99.5 97.9 70.0 97.0

7 10 50 10.0 2.4 2.2 2.7 32.5 10.2 73.6 87.1 96.9 61.5 95.6

7 30 50 0.1 76.8 27.4 5.7 38.1 34.5 83.6 99.3 94.3 77.7 92.7

7 30 50 1.0 14.2 7.0 6.4 36.9 34.9 81.7 87.6 92.7 70.0 90.9

7 30 50 10.0 3.1 2.2 8.1 33.1 32.9 75.4 75.7 89.3 61.5 86.8

7 50 50 0.1 145.5 27.4 9.4 29.3 58.6 84.0 87.3 89.2 77.7 87.9

7 50 50 1.0 22.5 7.0 10.6 30.1 60.3 82.4 74.9 85.8 70.0 84.8

7 50 50 10.0 3.9 2.2 13.5 29.4 58.8 77.0 62.8 78.5 61.5 78.0

7 70 50 0.1 271.8 27.4 13.2 18.5 83.5 84.2 74.9 82.3 77.7 83.0

7 70 50 1.0 35.8 7.0 14.9 19.8 87.1 82.9 61.5 75.8 70.0 78.7

7 70 50 10.0 5.1 2.2 18.9 21.2 87.8 78.5 48.3 60.8 61.5 69.2

7 90 50 0.1 535.8 27.4 17.0 6.5 100.0 84.4 62.0 72.6 77.7 78.1

7 90 50 1.0 60.4 7.0 19.1 7.1 100.0 83.4 47.4 59.6 70.0 72.7

7 90 50 10.0 7.0 2.2 24.3 8.4 100.0 79.8 31.9 23.8 61.5 60.4

7 10 75 0.1 170.1 124.3 1.9 68.1 12.2 84.6 100.0 99.0 100.0 98.6

7 10 75 1.0 25.3 20.1 2.1 65.4 13.0 83.7 100.0 98.8 100.0 98.3

7 10 75 10.0 4.2 3.7 2.7 60.3 13.7 80.3 100.0 98.3 100.0 97.6

7 30 75 0.1 232.3 90.4 5.7 59.5 36.7 84.6 100.0 96.4 100.0 95.2

7 30 75 1.0 31.8 16.0 6.4 59.6 39.1 83.7 100.0 95.7 100.0 94.3

7 30 75 10.0 4.8 3.3 8.1 56.8 41.2 80.3 100.0 93.8 100.0 91.9

7 50 75 0.1 318.8 65.2 9.4 44.9 61.2 84.6 100.0 92.7 100.0 91.2

7 50 75 1.0 40.4 12.7 10.6 47.0 65.2 83.7 100.0 90.8 98.9 89.3

7 50 75 10.0 5.5 2.9 13.5 47.8 68.7 80.3 98.3 86.3 88.4 84.7

7 70 75 0.1 445.5 46.5 13.2 28.1 85.7 84.6 99.3 86.7 94.7 86.1

7 70 75 1.0 52.3 10.0 14.9 30.4 91.1 83.7 84.9 82.5 87.0 82.9

7 70 75 10.0 6.4 2.6 18.9 33.3 96.4 80.4 67.4 72.0 77.1 75.5

7 90 75 0.1 663.4 32.8 17.0 9.7 100.0 84.6 70.0 75.7 83.3 79.6

7 90 75 1.0 71.5 7.9 19.1 10.8 100.0 83.6 54.8 65.1 75.6 74.7

7 90 75 10.0 7.9 2.3 24.3 12.8 100.0 80.4 37.5 35.2 66.5 63.4
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

8 10 0 0.1 1.4 1.1 1.7 0.0 3.6 53.3 1.6 0.0 2.2 25.0

8 10 0 1.0 1.2 1.1 1.9 0.0 3.3 41.7 1.8 0.0 2.3 18.0

8 10 0 10.0 1.1 1.0 2.4 0.0 3.4 27.0 2.4 0.0 2.7 10.5

8 30 0 0.1 5.5 1.8 5.0 0.0 23.6 78.6 4.7 0.0 11.0 54.1

8 30 0 1.0 2.5 1.4 5.7 0.0 19.6 70.9 5.1 0.0 9.9 42.5

8 30 0 10.0 1.5 1.2 7.3 0.0 16.4 55.2 7.0 0.0 10.1 27.3

8 50 0 0.1 26.1 3.7 8.4 0.0 50.7 83.5 13.1 35.9 25.6 67.3

8 50 0 1.0 6.7 2.0 9.5 0.0 46.2 79.4 9.8 3.4 22.0 56.7

8 50 0 10.0 2.1 1.3 12.2 0.0 38.9 68.6 11.0 0.0 20.3 39.7

8 70 0 0.1 103.2 8.2 11.8 0.0 78.9 85.1 27.0 56.4 44.3 73.5

8 70 0 1.0 17.4 3.2 13.3 0.0 77.8 82.9 18.2 26.9 38.1 65.0

8 70 0 10.0 3.4 1.6 17.1 0.0 71.3 76.0 14.6 0.0 33.5 48.8

8 90 0 0.1 371.5 18.0 15.1 0.0 100.0 86.0 43.7 65.4 65.3 76.8

8 90 0 1.0 45.3 5.2 17.1 0.0 100.0 84.8 29.8 42.5 57.5 70.2

8 90 0 10.0 5.8 1.9 22.0 0.0 100.0 80.7 17.6 0.0 49.8 55.8

8 10 25 0.1 6.7 4.5 1.7 16.8 9.4 82.1 40.3 95.8 30.0 94.4

8 10 25 1.0 2.9 2.3 1.9 14.1 8.1 76.4 34.4 94.5 25.6 92.6

8 10 25 10.0 1.5 1.4 2.4 11.9 6.6 62.9 31.6 92.3 23.3 89.5

8 30 25 0.1 21.7 6.7 5.0 18.1 31.4 84.0 43.3 88.4 39.3 87.2

8 30 25 1.0 5.9 2.9 5.7 16.6 29.0 80.3 36.1 84.2 33.7 83.1

8 30 25 10.0 2.0 1.5 7.3 14.0 24.5 70.1 32.6 77.5 29.9 75.4

8 50 25 0.1 62.9 10.0 8.4 14.4 55.8 85.0 46.1 81.9 49.4 83.1

8 50 25 1.0 12.3 3.6 9.5 14.5 54.5 82.5 36.8 74.1 42.7 77.7

8 50 25 10.0 2.8 1.7 12.2 13.5 48.8 74.9 31.5 61.1 37.3 67.2

8 70 25 0.1 166.5 14.8 11.8 9.3 81.8 85.6 48.9 76.0 59.9 80.4

8 70 25 1.0 24.7 4.6 13.3 9.8 83.2 84.0 37.0 64.0 52.4 74.6

8 70 25 10.0 4.1 1.8 17.1 10.3 79.8 78.5 28.2 39.4 45.4 62.3

8 90 25 0.1 441.7 21.7 15.1 3.3 100.0 86.2 51.5 70.6 70.8 78.6

8 90 25 1.0 51.8 5.9 17.1 3.6 100.0 85.1 36.7 53.3 62.8 72.7

8 90 25 10.0 6.4 2.0 22.0 4.3 100.0 81.4 22.5 2.1 54.4 59.5

8 10 50 0.1 37.5 26.1 1.7 40.9 11.3 85.2 100.0 98.5 76.3 97.8

8 10 50 1.0 8.6 6.7 1.9 36.9 11.2 83.0 96.7 98.0 68.2 97.2

8 10 50 10.0 2.4 2.1 2.4 31.6 10.2 75.9 83.7 97.1 59.2 95.9

8 30 50 0.1 74.4 26.1 5.0 38.3 34.8 85.5 97.1 94.8 76.3 93.4

8 30 50 1.0 13.8 6.7 5.7 36.9 35.1 83.8 84.7 93.3 68.2 91.6

8 30 50 10.0 3.0 2.1 7.3 32.8 32.9 77.7 72.3 89.8 59.2 87.6

8 50 50 0.1 142.1 26.1 8.4 29.6 59.1 85.9 84.9 90.2 76.3 89.0

8 50 50 1.0 22.0 6.7 9.5 30.4 60.8 84.4 71.9 86.8 68.2 86.1

8 50 50 10.0 3.8 2.1 12.2 29.5 59.0 79.3 59.3 79.4 59.2 79.3

8 70 50 0.1 267.8 26.1 11.8 18.7 84.3 86.1 72.3 83.7 76.3 84.6

8 70 50 1.0 35.3 6.7 13.3 20.1 88.0 84.9 58.3 77.1 68.2 80.5

8 70 50 10.0 5.0 2.1 17.1 21.6 88.7 80.7 44.5 61.5 59.2 71.1

8 90 50 0.1 532.4 26.1 15.1 6.6 100.0 86.3 59.3 74.5 76.3 80.2

8 90 50 1.0 60.0 6.7 17.1 7.3 100.0 85.3 43.9 60.9 68.2 74.9

8 90 50 10.0 7.0 2.1 22.0 8.7 100.0 82.0 27.7 20.4 59.2 62.8

8 10 75 0.1 166.5 121.2 1.7 67.9 12.4 86.4 100.0 99.1 100.0 98.7

8 10 75 1.0 24.7 19.6 1.9 65.0 13.2 85.6 100.0 98.9 100.0 98.4

8 10 75 10.0 4.1 3.6 2.4 59.6 13.9 82.4 100.0 98.5 100.0 97.8

8 30 75 0.1 228.4 87.7 5.0 59.9 37.2 86.4 100.0 96.8 100.0 95.7

8 30 75 1.0 31.3 15.5 5.7 59.8 39.7 85.6 100.0 96.0 100.0 94.8

8 30 75 10.0 4.7 3.2 7.3 56.8 41.8 82.4 100.0 94.2 98.3 92.5

8 50 75 0.1 314.7 62.9 8.4 45.4 61.9 86.5 100.0 93.4 100.0 92.0

8 50 75 1.0 39.9 12.3 9.5 47.5 66.1 85.6 100.0 91.6 97.2 90.2

8 50 75 10.0 5.4 2.8 12.2 48.3 69.7 82.5 94.3 87.0 86.1 85.8

8 70 75 0.1 441.7 44.7 11.8 28.5 86.7 86.4 96.8 87.9 93.4 87.4

8 70 75 1.0 51.8 9.6 13.3 30.9 92.4 85.6 81.6 83.7 85.2 84.4

8 70 75 10.0 6.4 2.5 17.1 33.9 97.9 82.5 63.2 72.9 74.7 77.1

8 90 75 0.1 660.8 31.3 15.1 9.9 100.0 86.4 67.3 77.5 82.0 81.6

8 90 75 1.0 71.2 7.6 17.1 11.0 100.0 85.6 51.2 66.6 73.7 76.8

8 90 75 10.0 7.9 2.3 22.0 13.2 100.0 82.6 33.1 33.4 64.2 65.7
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2

all(%) Vc(%) h
2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

9 10 0 0.1 1.3 1.1 1.5 0.0 3.3 54.7 1.4 0.0 2.0 25.8

9 10 0 1.0 1.2 1.1 1.7 0.0 3.0 43.1 1.7 0.0 2.1 18.6

9 10 0 10.0 1.1 1.0 2.2 0.0 3.1 28.2 2.2 0.0 2.5 11.1

9 30 0 0.1 5.2 1.7 4.5 0.0 23.1 80.3 3.9 0.0 10.3 55.8

9 30 0 1.0 2.5 1.4 5.2 0.0 19.0 72.7 4.4 0.0 9.2 44.0

9 30 0 10.0 1.4 1.2 6.7 0.0 15.7 57.2 6.3 0.0 9.4 28.6

9 50 0 0.1 25.1 3.5 7.5 0.0 50.6 85.1 11.4 34.2 24.5 69.2

9 50 0 1.0 6.5 2.0 8.6 0.0 45.8 81.2 8.3 0.0 20.8 58.6

9 50 0 10.0 2.1 1.3 11.2 0.0 38.1 70.6 9.6 0.0 19.1 41.4

9 70 0 0.1 100.7 7.8 10.6 0.0 79.3 86.6 24.9 57.4 43.0 75.3

9 70 0 1.0 17.0 3.1 12.1 0.0 78.0 84.5 16.0 24.3 36.6 67.0

9 70 0 10.0 3.3 1.6 15.7 0.0 70.9 77.9 12.4 0.0 31.9 50.9

9 90 0 0.1 368.0 17.2 13.6 0.0 100.0 87.5 41.4 67.1 64.0 78.7

9 90 0 1.0 44.9 5.1 15.5 0.0 100.0 86.4 26.9 42.2 55.9 72.2

9 90 0 10.0 5.8 1.9 20.2 0.0 100.0 82.5 14.4 0.0 48.0 57.9

9 10 25 0.1 6.4 4.3 1.5 16.4 9.3 83.7 38.6 96.1 28.8 94.7

9 10 25 1.0 2.8 2.2 1.7 13.6 7.9 78.2 32.6 94.7 24.4 92.9

9 10 25 10.0 1.5 1.4 2.2 11.4 6.4 65.0 29.8 92.5 22.0 89.8

9 30 25 0.1 20.8 6.4 4.5 18.1 31.4 85.5 41.4 89.0 38.1 88.1

9 30 25 1.0 5.7 2.8 5.2 16.5 28.8 82.0 34.1 84.8 32.3 84.0

9 30 25 10.0 2.0 1.5 6.7 13.7 24.1 72.1 30.6 78.0 28.4 76.3

9 50 25 0.1 61.1 9.5 7.5 14.5 56.0 86.5 44.1 82.9 48.1 84.3

9 50 25 1.0 11.9 3.5 8.6 14.6 54.5 84.2 34.5 75.0 41.2 79.1

9 50 25 10.0 2.8 1.6 11.2 13.4 48.5 76.9 29.2 61.6 35.6 68.5

9 70 25 0.1 163.5 14.2 10.6 9.3 82.4 87.1 46.7 77.3 58.6 81.9

9 70 25 1.0 24.3 4.5 12.1 10.0 83.8 85.6 34.3 64.8 50.8 76.2

9 70 25 10.0 4.0 1.8 15.7 10.4 80.0 80.4 25.5 38.4 43.6 64.1

9 90 25 0.1 438.4 20.8 13.6 3.3 100.0 87.6 49.1 72.2 69.5 80.4

9 90 25 1.0 51.4 5.7 15.5 3.7 100.0 86.6 33.7 53.9 61.2 74.6

9 90 25 10.0 6.3 2.0 20.2 4.4 100.0 83.1 19.1 0.0 52.5 61.6

9 10 50 0.1 36.1 25.1 1.5 40.5 11.4 86.7 100.0 98.6 75.1 98.0

9 10 50 1.0 8.3 6.5 1.7 36.3 11.3 84.7 94.2 98.2 66.6 97.4

9 10 50 10.0 2.3 2.1 2.2 30.9 10.1 77.8 80.8 97.2 57.2 96.1

9 30 50 0.1 72.3 25.1 4.5 38.4 35.0 87.0 95.1 95.2 75.1 93.9

9 30 50 1.0 13.4 6.5 5.2 36.8 35.3 85.3 82.2 93.7 66.6 92.2

9 30 50 10.0 2.9 2.1 6.7 32.5 32.9 79.6 69.4 90.3 57.2 88.3

9 50 50 0.1 139.3 25.1 7.5 29.8 59.6 87.3 82.8 90.9 75.1 90.0

9 50 50 1.0 21.6 6.5 8.6 30.6 61.2 85.9 69.2 87.5 66.6 87.1

9 50 50 10.0 3.8 2.1 11.2 29.6 59.2 81.1 56.2 80.1 57.2 80.4

9 70 50 0.1 264.3 25.1 10.6 18.9 85.1 87.5 70.1 84.9 75.1 85.9

9 70 50 1.0 34.8 6.5 12.1 20.4 88.9 86.4 55.4 78.2 66.6 81.9

9 70 50 10.0 5.0 2.1 15.7 21.9 89.3 82.4 41.2 61.9 57.2 72.6

9 90 50 0.1 529.4 25.1 13.6 6.6 100.0 87.8 56.9 76.0 75.1 81.8

9 90 50 1.0 59.6 6.5 15.5 7.4 100.0 86.9 40.8 61.9 66.6 76.7

9 90 50 10.0 7.0 2.1 20.2 8.9 100.0 83.7 24.0 16.0 57.2 64.8

9 10 75 0.1 163.5 118.5 1.5 67.8 12.5 87.9 100.0 99.2 100.0 98.8

9 10 75 1.0 24.3 19.2 1.7 64.7 13.4 87.1 100.0 99.0 100.0 98.6

9 10 75 10.0 4.0 3.5 2.2 59.0 14.1 84.1 100.0 98.6 100.0 98.0

9 30 75 0.1 225.0 85.4 4.5 60.2 37.5 87.9 100.0 97.1 100.0 96.1

9 30 75 1.0 30.8 15.1 5.2 60.1 40.2 87.1 100.0 96.4 100.0 95.2

9 30 75 10.0 4.6 3.1 6.7 56.8 42.3 84.1 100.0 94.6 96.4 93.0

9 50 75 0.1 311.2 61.1 7.5 45.8 62.5 87.9 100.0 94.0 100.0 92.8

9 50 75 1.0 39.4 11.9 8.6 48.0 66.9 87.1 100.0 92.2 95.7 91.0

9 50 75 10.0 5.4 2.8 11.2 48.7 70.6 84.1 90.9 87.7 84.1 86.7

9 70 75 0.1 438.4 43.2 10.6 28.8 87.5 87.9 94.7 88.8 92.3 88.5

9 70 75 1.0 51.4 9.3 12.1 31.3 93.6 87.1 78.7 84.7 83.7 85.6

9 70 75 10.0 6.3 2.5 15.7 34.5 99.2 84.2 59.5 73.6 72.7 78.4

9 90 75 0.1 658.4 30.2 13.6 10.0 100.0 87.9 64.9 79.0 80.7 83.1

9 90 75 1.0 70.9 7.3 15.5 11.2 100.0 87.1 48.1 67.7 72.1 78.5

9 90 75 10.0 7.8 2.2 20.2 13.5 100.0 84.2 29.2 31.0 62.2 67.6
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Table 8: Model parameters for the LP model LP∆(k, h2
pathway, cR, µ) for disease traits. (cont.)

k h2
path(%) cR(%) µ(%) λMZ λs h2all(%) Vc(%) h

2(ACE)
pop (%) π

(ACE)
phan

(%) h
2(ADE)
pop (%) π

(ADE)
phan

(%) h
2(PO)
pop (%) π

(PO)
phan

(%)

10 10 0 0.1 1.3 1.1 1.4 0.0 3.1 55.9 1.3 0.0 1.9 26.5

10 10 0 1.0 1.2 1.1 1.6 0.0 2.8 44.2 1.5 0.0 2.0 19.2

10 10 0 10.0 1.1 1.0 2.1 0.0 2.9 29.2 2.0 0.0 2.3 11.5

10 30 0 0.1 5.0 1.7 4.1 0.0 22.6 81.7 3.2 0.0 9.7 57.1

10 30 0 1.0 2.4 1.3 4.7 0.0 18.4 74.3 3.8 0.0 8.7 45.3

10 30 0 10.0 1.4 1.1 6.2 0.0 15.1 58.9 5.7 0.0 8.8 29.7

10 50 0 0.1 24.2 3.3 6.9 0.0 50.5 86.4 10.1 31.7 23.5 70.8

10 50 0 1.0 6.3 1.9 7.9 0.0 45.3 82.6 7.1 0.0 19.8 60.2

10 50 0 10.0 2.1 1.3 10.4 0.0 37.4 72.3 8.5 0.0 18.1 43.0

10 70 0 0.1 100.0 7.4 9.7 0.0 79.6 87.9 23.0 58.0 41.9 76.9

10 70 0 1.0 16.7 3.0 11.1 0.0 78.1 85.8 14.0 20.8 35.4 68.7

10 70 0 10.0 3.3 1.5 14.5 0.0 70.6 79.5 10.6 0.0 30.6 52.6

10 90 0 0.1 364.9 16.5 12.4 0.0 100.0 88.7 39.3 68.4 62.9 80.2

10 90 0 1.0 44.5 4.9 14.2 0.0 100.0 87.6 24.3 41.5 54.5 73.9

10 90 0 10.0 5.8 1.9 18.6 0.0 100.0 83.9 11.5 0.0 46.3 59.8

10 10 25 0.1 6.1 4.1 1.4 16.0 9.2 85.0 37.1 96.3 27.8 95.0

10 10 25 1.0 2.7 2.1 1.6 13.2 7.8 79.7 31.1 94.9 23.3 93.2

10 10 25 10.0 1.5 1.4 2.1 10.9 6.2 66.7 28.3 92.7 21.0 90.1

10 30 25 0.1 20.0 6.1 4.1 18.0 31.4 86.8 39.8 89.6 37.0 88.8

10 30 25 1.0 5.5 2.7 4.7 16.3 28.6 83.4 32.3 85.3 31.1 84.8

10 30 25 10.0 2.0 1.5 6.2 13.4 23.7 73.7 28.9 78.5 27.2 77.1

10 50 25 0.1 59.4 9.1 6.9 14.6 56.2 87.8 42.3 83.8 46.9 85.4

10 50 25 1.0 11.6 3.4 7.9 14.6 54.6 85.5 32.5 75.7 39.8 80.2

10 50 25 10.0 2.7 1.6 10.4 13.4 48.1 78.5 27.2 62.0 34.2 69.7

10 70 25 0.1 160.8 13.6 9.7 9.4 82.9 88.3 44.7 78.4 57.4 83.2

10 70 25 1.0 23.9 4.3 11.1 10.1 84.2 86.9 32.0 65.5 49.4 77.6

10 70 25 10.0 4.0 1.8 14.5 10.5 80.1 81.9 23.1 37.2 42.1 65.6

10 90 25 0.1 435.5 20.0 12.4 3.3 100.0 88.8 47.0 73.5 68.4 81.8

10 90 25 1.0 51.0 5.5 14.2 3.7 100.0 87.9 31.1 54.2 59.7 76.2

10 90 25 10.0 6.3 2.0 18.6 4.4 100.0 84.5 16.0 0.0 50.8 63.3

10 10 50 0.1 35.0 24.2 1.4 40.2 11.5 87.9 100.0 98.7 74.0 98.1

10 10 50 1.0 8.0 6.3 1.6 35.8 11.3 86.0 92.1 98.3 65.2 97.6

10 10 50 10.0 2.3 2.1 2.1 30.2 10.1 79.4 78.3 97.4 55.5 96.3

10 30 50 0.1 70.5 24.2 4.1 38.5 35.2 88.2 93.4 95.6 74.0 94.4

10 30 50 1.0 13.1 6.3 4.7 36.8 35.5 86.6 80.0 94.1 65.2 92.7

10 30 50 10.0 2.9 2.1 6.2 32.2 32.9 81.1 66.9 90.7 55.5 88.8

10 50 50 0.1 136.7 24.2 6.9 30.0 60.0 88.5 81.0 91.5 74.0 90.7

10 50 50 1.0 21.2 6.3 7.9 30.8 61.6 87.2 66.9 88.2 65.2 87.9

10 50 50 10.0 3.7 2.1 10.4 29.7 59.4 82.6 53.6 80.7 55.5 81.4

10 70 50 0.1 261.3 24.2 9.7 19.1 85.7 88.7 68.1 85.8 74.0 86.9

10 70 50 1.0 34.4 6.3 11.1 20.6 89.6 87.7 52.9 79.1 65.2 83.0

10 70 50 10.0 4.9 2.1 14.5 22.1 89.9 83.9 38.3 62.2 55.5 73.9

10 90 50 0.1 526.8 24.2 12.4 6.7 100.0 88.9 54.8 77.3 74.0 83.2

10 90 50 1.0 59.3 6.3 14.2 7.5 100.0 88.1 38.1 62.7 65.2 78.2

10 90 50 10.0 6.9 2.1 18.6 9.1 100.0 85.1 20.8 10.5 55.5 66.4

10 10 75 0.1 160.8 116.2 1.4 67.6 12.6 89.1 100.0 99.3 100.0 98.9

10 10 75 1.0 23.9 18.8 1.6 64.4 13.5 88.3 100.0 99.1 100.0 98.7

10 10 75 10.0 4.0 3.5 2.1 58.4 14.2 85.5 100.0 98.7 100.0 98.1

10 30 75 0.1 222.0 83.5 4.1 60.4 37.9 89.1 100.0 97.3 100.0 96.4

10 30 75 1.0 30.4 14.8 4.7 60.3 40.6 88.3 100.0 96.6 100.0 95.6

10 30 75 10.0 4.6 3.1 6.2 56.7 42.8 85.5 100.0 94.8 94.7 93.4

10 50 75 0.1 308.1 59.4 6.9 46.1 63.1 89.1 100.0 94.4 100.0 93.3

10 50 75 1.0 39.0 11.6 7.9 48.4 67.6 88.3 100.0 92.7 94.4 91.6

10 50 75 10.0 5.3 2.7 10.4 49.1 71.4 85.5 87.8 88.2 82.3 87.4

10 70 75 0.1 435.5 41.9 9.7 29.1 88.3 89.1 92.8 89.6 91.3 89.4

10 70 75 1.0 51.0 9.1 11.1 31.7 94.6 88.3 76.2 85.5 82.3 86.6

10 70 75 10.0 6.3 2.4 14.5 35.0 100.0 85.5 56.3 74.2 70.9 79.6

10 90 75 0.1 656.4 29.1 12.4 10.1 100.0 89.0 62.8 80.2 79.7 84.4

10 90 75 1.0 70.7 7.1 14.2 11.4 100.0 88.3 45.4 68.6 70.7 79.9

10 90 75 10.0 7.8 2.2 18.6 13.8 100.0 85.6 25.9 28.0 60.4 69.2
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Table 9:

For each of the 74 loci associated with Crohn’s disease, we display the reported SNP-ID, nearest

gene reported, Risk-Allele-Frequency (RAF) and Genetic-Relative-Risk (GRR).

• Vi(%) is the fraction of variance explained (on the liability scale).

• h2
all expl.(A∆ ) is the fraction of the true narrow sense heritability explained under the additive

A∆ model

• h2
all expl.(LP∆ ) is the fraction of the true narrow sense heritability explained under the alter-

native LP∆ (3) model.

• Pathway denotes are random assignment of the known SNPs to the three notional pathways

in the LP∆ (3) model. Different pathway assignments did not affect the heritability results.
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Table 9: Assumed and actual variance explained by associated SNPs for Crohn’s disease. (Source:

Franke et al.11). Epidemiological Parameters: µ = 0.2%, h2
pop = 83%, λMZ = 250, λs = 35.

# SNP-ID Gene RAF GRR Vi(%) %h2
all expl. (A∆ ) %h2

all expl. (LP∆ ) Pathway

1 rsG908 NOD2 0.01 3.50 1.51 1.83 5.21 2

2 rsfs1003 NOD2 0.01 3.50 1.51 1.83 5.21 2

3 rsR702 NOD2 0.04 2.50 1.36 1.64 4.67 2

4 rs11209026 IL23R 0.93 2.66 0.47 0.57 1.63 2

5 rsIL23 IL23R 0.57 1.37 0.40 0.49 1.39 1

6 rs3792109 ATG16L1 0.53 1.34 0.37 0.44 1.26 2

7 rs11742570 PTGER4 0.61 1.33 0.32 0.38 1.10 2

8 rs11564258 MUC19 0.03 1.74 0.23 0.27 0.78 1

9 rs12521868 SLC22A4 0.42 1.23 0.19 0.23 0.65 3

10 rs10761659 ZNF365 0.54 1.23 0.18 0.22 0.63 3

11 rs7714584 IRGM 0.09 1.37 0.18 0.22 0.63 1

12 rs4409764 NKX2-3 0.49 1.22 0.17 0.21 0.60 2

13 rs3197999 MST1 0.30 1.22 0.16 0.19 0.54 3

14 rs7517810 TNFSF18 0.25 1.22 0.14 0.17 0.49 3

15 rs1893217 PTPN2 0.15 1.25 0.13 0.16 0.46 2

16 rs3810936 TNFSF15 0.68 1.21 0.13 0.16 0.44 3

17 rs4077515 CARD9 0.41 1.18 0.12 0.14 0.41 1

18 rs2838519 ICOSLG 0.39 1.18 0.12 0.14 0.41 1

19 rs10758669 JAK2 0.35 1.18 0.11 0.14 0.40 2

20 rs6556412 IL12B 0.33 1.18 0.11 0.14 0.39 1

21 rs1250550 ZMIZ1 0.67 1.19 0.11 0.13 0.38 3

22 rs3091315 CCL2 0.72 1.20 0.11 0.13 0.37 1

23 rs415890 CCR6 0.52 1.17 0.11 0.13 0.37 1

24 rs7927997 C11orf30 0.39 1.17 0.11 0.13 0.37 1

25 rs2058660 IL18RAP 0.23 1.19 0.10 0.13 0.36 1

26 rs4871611 0.61 1.17 0.10 0.12 0.34 2

27 rs1799964 MCCD1 0.21 1.19 0.10 0.12 0.34 3

28 rs2413583 MAP3K7IP1 0.83 1.23 0.09 0.11 0.32 2

29 rs8005161 GALC 0.12 1.23 0.09 0.11 0.32 1

30 rs1736020 0.58 1.16 0.09 0.11 0.32 3

31 rs3764147 C13orf31 0.25 1.17 0.09 0.11 0.30 3

32 rs780093 GCKR 0.42 1.15 0.09 0.10 0.29 3

33 rs1819658 UBE2D1 0.77 1.19 0.08 0.10 0.29 3

34 rs12242110 CREM 0.32 1.15 0.08 0.09 0.27 1

35 rs740495 GPX4 0.25 1.16 0.08 0.09 0.27 1

36 rs6651252 0.86 1.23 0.08 0.09 0.26 1

37 rs2872507 GSMDL 0.46 1.14 0.08 0.09 0.26 3

38 rs10181042 C2orf74 0.42 1.14 0.08 0.09 0.26 1

39 rs6908425 CDKAL1 0.78 1.17 0.07 0.08 0.23 1

40 rs2476601 PTPN22 0.91 1.26 0.07 0.08 0.23 3

41 rs1456896 IKZF1 0.69 1.14 0.06 0.07 0.21 1

42 rs11871801 MLX 0.76 1.15 0.06 0.07 0.20 3

43 rs6568421 PRDM1 0.30 1.13 0.06 0.07 0.20 2

44 rs7554511 C1orf106 0.73 1.14 0.06 0.07 0.20 1

45 rs7702331 TMEM174 0.60 1.12 0.05 0.06 0.18 3

46 rs3180018 SCAMP3 0.25 1.13 0.05 0.06 0.18 3

47 rs4656940 CD244 0.80 1.15 0.05 0.06 0.17 1

48 rs4809330 RTEL1 0.71 1.12 0.04 0.05 0.15 3

49 rs17293632 SMAD3 0.23 1.12 0.04 0.05 0.15 3

50 rs212388 TAGAP 0.39 1.10 0.04 0.05 0.13 3
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Table 9: Assumed and actual variance explained by associated SNPs for Crohn’s disease. (Source:

Franke et al.11). Epidemiological Parameters: µ = 0.2%, h2
pop = 83%, λMZ = 250, λs = 35. (cont.)

# SNP-ID Gene RAF GRR Vi(%) %h2
all expl. (A∆ ) %h2

all expl. (LP∆ ) Pathway

51 rs10495903 THADA 0.13 1.14 0.04 0.05 0.13 3

52 rs2062305 TNFSF11 0.35 1.10 0.04 0.05 0.13 3

53 rs7423615 SP140 0.19 1.12 0.04 0.04 0.13 3

54 rs694739 PRDX5 0.63 1.10 0.04 0.04 0.13 2

55 rs17309827 C6orf85 0.64 1.10 0.04 0.04 0.12 1

56 rs3024505 IL10 0.16 1.12 0.03 0.04 0.11 1

57 rs181359 YDJC 0.20 1.10 0.03 0.03 0.09 3

58 rs713875 MTMR3 0.47 1.08 0.03 0.03 0.09 2

59 rs359457 CPEB4 0.57 1.08 0.03 0.03 0.09 1

60 rs102275 FADS1 0.34 1.08 0.02 0.03 0.08 1

61 rs13073817 0.32 1.08 0.02 0.03 0.08 3

62 rs12722489 IL2RA 0.85 1.11 0.02 0.03 0.08 1

63 rs281379 FUT2 0.49 1.07 0.02 0.02 0.07 1

64 rs151181 APOB48R 0.39 1.07 0.02 0.02 0.07 2

65 rs4902642 ZFP36L1 0.58 1.07 0.02 0.02 0.07 3

66 rs12720356 TYK2 0.08 1.12 0.02 0.02 0.07 3

67 rs1847472 BACH2 0.66 1.07 0.02 0.02 0.06 1

68 rs6738825 PLCL1 0.47 1.06 0.01 0.02 0.05 1

69 rs736289 0.61 1.06 0.01 0.02 0.05 3

70 rs13428812 DNMT3A 0.33 1.06 0.01 0.02 0.05 1

71 rs2549794 ERAP2 0.41 1.05 0.01 0.01 0.04 2

72 rs11167764 NDFIP1 0.80 1.06 0.01 0.01 0.03 2

73 rs2797685 VAMP3 0.19 1.05 0.01 0.01 0.02 3

74 rs1998598 DENND1B 0.30 1.04 0.01 0.01 0.02 1

Total (%): 10.8 21.5 57.5
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